Ostendo

Scripting Reference Guide

Copyright 2022 Development-X Limited

4th February 2022

Contents 3

Table of Contents

Introduction 10

Scripting Use in Ostendo 11

I O W 1= o 1Y, =T o 10 TS Yo o o S 11

MEIN IMENU SCEIPT ..ttt b e bttt et e ea e e b et et e e be e e b et s et e e e sbe e sab e e be e e neeebeeanneenn 11

DESKLOP ICON SCIIPL ...ttt n e e sre e e nre s 12

COMMANT LINE SCEIPT ..ttt b e bbbt e et e sab e et et e nbe e e bt e st e e b e e naneenbne s 13

A V41 =Y 0 17X 1 Lo] o S 14

I U1 (o] 0 IR ST o] (=TT o 1< T PP 14

4 Related MENU SCIIPT .ottt e e e e s et e e e e e e e e s s abbbeeeeaaaeaeaaaanns 15

LI @] o [T g T o) S S 15

SIS Tod (=TT T = - T o | o) S 16

T WOTKFIOW SCEIPT ...ttt e e e e e ettt e e e e e e e s e et be b e e e e e e e e e e annbebeees 17

8 REPOIt LAYOUL EQITOr ..ottt e e e et e e e e e e e e e anbneeees 18

Basic Script Structure 20
Constants, Variables, Functions,

Procedures 23

N o T] AU PP UUTTR PP 23

2 AddCONtACISTOOULIOOKeeiiiiiiiiiie ittt et et e e s 23

3 AJAREIALEAMENUITEIM ..eiiiiiiiiie e s et e e st e e s e nbre e e s enees 24

4 AdAREPOITMENUITEIM ..ottt e et e e e e s et b e e e e e e e e s s absbeeeeeaaeeeaaaanns 25

SR AN (o o= 1=l Ko N fo] o @] o [=] TP UPTTP TSP 26

6 ASKMandatoryQUESTIONcuiiiiiiiiiiiiiiiieiie et e s e s e e e e e s s e e e e e e e s e st e e e aeeeeesennnrnenees 26

7 AskMandatoryQuestioNWithLOOKUDcciiiiiiiiiiiiiiiiicce e 27

8 ASKQUESTION ... ———————————————————— 28

9 ASKQUESHIONNUMENICRANGE ...coiiiiiiiiiiiiie ittt e e e e e et e e e e e e e e e anbneeees 28

10 ASkQUESHIONWINCRECKIISTcoooeiiieceeceeeee s 29

11 AsSkQUESHIONWItNDBCNECKIISTcccoeeiiiiieeiiceeeeeee s 30

12 ASKQUESTIONWITNLOOKUPD .ooiiiiiiiiitee ittt e e e eaaae s 30

13 AskQuestionWithUserDefinedLOOKUPccuuiiiiiiiiiiiai e 31

14 CleArValUBSTOIEueeiiiiiiiii ettt ettt et e e e e st b et e e s anbbeeeessnbbeeeeansbeeeeens 32

ST O [17=1@ 1S3 =] T o T PR OTRPRURRTPPRP 32

I O o 1SY= Yo £ =TT o [P T TP UPPP PP 32

17 ConVertTOUNIVEISAITIME ..coiii ittt e e e e e e e e e e rab e eeaaaa s 33

SO0 0/ T - SRR 33

Ostendo Scripting Support

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

L1 LT L=T I | PR TP 34
CUITENTUSEN .ttt e e e e e s e e e et e e e e e e s s bbb e e et e e e e e e e e snnbnbeeeeeeeeeas 34
OIUES] (o] o1 I T4 [T\ [0 1= TR 35
O1U LSy (010 01@] fo (=T N1 1T 1 5 PR TR 35
(O1U1S1 0010 01] foTo [¥ o1 (@ Lo [T PR 35
(O{U1SY 0010 0154 foTo [¥ o1 (@1 e [1Y/ o = R 35
(OIUES] (o] gl o foTe [BTo (@IUES] (o] 1 41T SRRSO 36
CUSLOMPIOAUCIDESCIIPLION ..ttt e e e e e e snb e eeaaae s 36
CustomSalesOrderNUMDBET ... 36
(OIUES] (o]0 IS 12T IR T 1= 1 5 L PR 37
(D= L -1] Y@= o Lo Y PSSR 37
DataENtryCellValUEGET ...ttt e e e e e bbb ee e e e e e e e aaaes 37
DataENtryCellValUESEL ...t a e e e e e e e e e aaees 37
DataENtryColUMNCOUNLE ... e e e e e e e e s e s e e e e e e e e s s nnnrenneeaeeeeananns 38
DataENtryCoOlUMNCIEALEeeevieeieee et e e s e e e e e e e s e et e e e e e e s e s s nnnraneeeeeeeeananns 38
DAtaENTIYCIEATE ...ttt s 39
DataEntryFOcUuSedCOIUMNINAEX ...cccoiiiiiiiiiiiii et e e e e 39
DataEntryFOCUSEARECOIAINUEX ...ccviiiiiiiiiiiiiic e e e e e e e e s s e ee e e e e e e e e e anns 39
DataEntryNeWRECOIrAVAIUESSELcooiiiiiiiiiiie e e e e e e e e e 39
DAtaENTIYOK ...t s 40
DataENtryRECONACOUNT ...ttt e e e e et e e e e e e e s e bbabeeeeeeaeeeeaannns 40
DataENTrySEtLADEoooiiiii e e e e 40
= L =1 Y25 10PN 40
DataSCreeNACHVESCREIMEuiiiiii e e e e 40
DataScreenNChanQgeSCNEIMEoiiiiii et e e e e e e 41
D=1z S od 12T o L0 (o 1T PP ORI 41
DataSCreenNGEIODJECITEXEuiiiiiiiiiei e e s e e e e e e s e s e e e e e e s s s s e neeeaeeeeananns 41
DataScreenObJeCtLOAAPICIUNEcciiiiiiiiei ettt a e e e e e e e e e 41
DataSCreeNQUESTIONccooi i ———————————————————— 42
DataScreenSaveGraphiCalFile ... e 43
DataSCreENSEIEITTEXEcciiiiiiiie ittt ettt et e e et e e e sbb e e e s sabeeeeesnabeeeeeans 43
DataScreenSetODJECICOIOULcoiiiiiiie e e e e e e e e e 43
DataScreenSetObjectGradieNtCOIOUNcoiiiiiiiiiiiiie e 43
DataScreenSetODbJECIHINTuviiiiiei e e e e r e e e e e e anes 44
(D= 17 I Yo £ =T o 1SY=] (@] o] =T o 1=t S PSSR 44
DataScreenSetObJeCtTraNSPArEINCYcc..uueiiiiiia ettt e e e et e e e e e e e e aeibabeeeeaaaeeeaaaanes 44
DataScreenSetODbJeCtViISIDIEoo e 45
(D=1t RS el £=T=T 0 151 o [0 1 PP PP PPPOPRRR 45
DBVAIUEEXISTSetiiiiiitiiiie ittt ettt ettt e sttt e e e sttt e e e s bbe e e e e sttt e e e s snbeeeeesnbbeeeeean 45

Contents 5

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

[D12] 1= (] T =TT UPPTPUPERRTR 46
(D=1 1=Y (=T] U= I PP PPPPOPRRR 46
(D=1 7=V | (@ =3 1] 2 0] e To] (U] o PSSR 47
DetailCustomLOOKUPBUIONCIICKcooiiiiiiieii e 48
DetailDOMAaINCOMDIOoooiiiii ettt e e e e et e e e e e e e s e bbb e e eeeeaeeeaeannns 49
DetailFocuseditemMChangEedooviiiiiiiie e e e r e e e e e e e 49
[1= 7= Y| | 0 QU | o PSSR 50
DEtaiINEWRECOIT ...ttt e e e et e e e e e e e e e s nbbbeeeeaeaeeeaaaanns 50
DetailREAAOINIY ...ttt e e e ettt e e e e e e e s e abbbeeeeaaaeeeaaannns 51
D2y = T A = [o L =P PP PPPPOPRRR 51
DetailValueSCOMDOo.uviiiiie et 52
D] =Tt (0] Y] b (= T PP UPPUPUPERRTT 52
[D]1S] o] = 1Y/ D L= L <= PP PUPPRRTTN 52
D1V o] Lo = o | o1 =T I = PP PPPPOPRRR 53
[o | o T =TT PSSR 54
T oL U (=1 O PP SSPTPPIN 54
| o]0] ¢ 1 BT L - E T TP 55
FHIEEXISTS ittt e e ettt e e e sttt e e e sab et e e e e bbbt e e e abb e e e e s anbeeeeeanbeeeeean 55
FINISNQUESTIONS ... 56
L I T PSPPSR 57
GetBooleanFromMTabIe ...t 58
€71 (00 1] 0= 1)Y/ 1\ F= 11 = 58
LC 1= (001 AT PO P TP PP PPPTPPPRI 59
GetCUITENCYFOIMAL ... e e e e e e e e e e e e e e e e e e aaaaaaaaaaaens 59
GEtCUSTOMEISEIIPTICE ..ottt e et e e e e e e e e abaeeeaaae s 60
GetDAtEFTOMTADIEcoiiiiiiii et 60
GetDOUDIEFIOMTADIE ... e 61
GetEMailAttaChMeENtCOUNT ... e e e 61
GEIEMAIMESSAQGE ... ittt e ettt ettt e e e e e s s ab bbb e e e e e e e e e e e snnbabbeeeaaaaeas 62
GELFIEIANAIMES ...ttt e sttt e e s bt e e e s nbae e e e snneeees 63
1o 1= L APPSR 64
(1<) (1T g [=] = 1 (o] SRR U U TP U PP UP PPN 65
GetINtegerFrOMTADIE ... e e e e e e e e ae s 66
LC1=] (@251 1=T g To (o1 @0 10 0] o =T 1 1= PR 67
GetSOUICERIEIAVAIUEoeeiiiiieiie e 67
GEtSQLRESUIL ... e e e e e e e e e e e aaaaaaaaaaaaes 68
LCT=) 5] (o | 21U)Y/ o o To = PR TR 68
GEESIASEIIPTICE ..ottt e e sttt e e nb e e e s snaeeeas 69
1= S 1 g aTe | =] o 1= o] - PR 69

Ostendo Scripting Support

97 GetTADIENAMES ...ttt ettt e e e e e e s bbb e e e e e e e e e e e nnrnreees 70
98 GEtVAIUEFTOMSTONE ...ciiiiiiiiieiiiiiee ettt ettt ettt e e s st e e e s s nb b e e e sbbb e e e e nnneeeas 70
1SS 11 11V] 4 [0111Y (@ o] =T ox IV R 71
100 GetWOrKFIOWODJECITEXL ...oiiiiiiiiiieeie ettt e e e e e e e e e e e e e sebbbreeeaaaeeas 71
101 INSEITASSEIMDBIY ...ttt et e e e e e e s aab et e e e e e e e e e sanbbbbeeeaaaeeas 72
02 | 1T=T o 7A=Y =T=T 0 0 o] Y/ T 1= SO PPPE 73
01 T 1 TST=T o 7 ANCT Y= T 0 0] o1 V4@ LU 14 o1 SRR 74
104 INSEITASSEMBIYSTEP ...ttt ettt e e e e e s s bt e e e e e e e e e e sannbbbbeeeaaaeeas 75
105 INSEITBOMHEAUETttt e ettt ettt e e e e e e s aab b et e e e e e e e e e e sanbbbreaeaaaaeas 75
106 INSEITBOMLINEeiiiiiiiiiie ettt e st e e e sttt e e e ettt e e s sttt e e e b be e e e e anbbeeeeennbaeeeeannees 76
O [17=T g (= 1@ 1Y | o o= o 76
108 INSEItBOMRESOUICE ...ttt ettt e et e bbb s 76
109 INSEITBOMSTEP ...uuiuiiiiiie ettt e oottt ettt et ettt aeaeeebesbebebebebebab b e 77
RO o =T o A0 T o R RSP PP 77
N R T o L= T o A8 To] 0 O o [T o I o = RSP PPP 78
2 1 0 17=T o (@ o [T o N 1 P TT TR OO 79
113 INSEITPUICNASEOITEeeiiiiiiieeieete ettt et e e e e e e st e e e e e e e e e e sannbbbreeeeaaaeas 79
114 INSErtPUrChasSEOITEILINEoiiiiiiiiie ittt et e e st e e e e snbae e e e ennees 80
SR o E=T a1 =T ot o] o R PPP TP PPP 81
116 INSEITSAIESOIUENttt e e e ettt e e e e e e s e aab b e et e e e e e e e e e sannbbbbeeeaaaaeas 82
117 INSEIrTSAIESOITEILINE ..ueeiiiiiiiee ettt ettt e e e e e et e e e e e e e e e sanbabreeeaaaaens 82
118 INSErtTIMESNEETHEAUENveiiiiiiiiee e e 83
119 INSErtTIMESNEETLINEeiiiiiiiiiie ettt e e et e e e e snbae e e e ennees 84
D2 O T o T=T @ Y PP TT PP 86
121 LiNESCUSTOMLOOKUD ..uttiiiiiiieiiite ettt ettt e e e e e e e e e e e e e e e snnbabreeeaaaaeas 86
122 LinesCustomMLOOKUPBUTIONCIICKccciiiiiiiiiiieicicce et e e 87
123 LiNeSDOMAINCOMDOoiiiiiiiiiiiiiiiei ettt et e e e e s et e e e e snbae e e e ennees 88
124 LinesFocusediteMCRNANGgEMouiiiiiiiiiiiiii et a e e e e 88
125 LINESLOOKUP ..coiiiiiiiiitttte ettt e ettt et e e e e e e o bbbt e et e e e e e e s e aabbe e e e e e aeaeeesannbbbbeeeaaaaens 89
126 LINESNEWRECOIT ...cooiiiiiiieiiiiiee ettt ettt e bt e e s sttt e e e b be e e e s anbbe e e e e snbaeeeeannees 89
2 A I g ToTS] == o (@ o | OO PPE 89
128 LINESVAIIAALEoooiiiiiiiie ettt ettt ettt e e e e e e s aab et e e e e e e e e e e sannbbbreeeaaaaeas 90
129 LiNeSValUESCOMDOuiiiiiiiii et e e e e e b eeeeaae s 90
130 LINEURNIEPTIICE .ottt ettt e e ettt e e e sttt e e e bt e e e e anbbe e e e e nnbaeeeeennees 91
R 3 W0 = Vo 1] o1 €= o 1] i 1= -1 OO 91
132 MESSAQGEDIY ..eeeiiiiiiii ettt e e e e e e st e e e e e e e e e nbbbreaeaaaaeas 91
R I T IV (o) V7= | T TT TP 92
R 7R @ (o 1= Yo] o 1 LU | SR 92

R 1T @ 1S (T g o [0 AN g Fo YA =SSP 93

Contents 7

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

L0151 (=] oo o104 o T- 1 o AR PR TP 94
(@S 1=T oo (o] o L1 NV AT PR 94
L@ 15 11 o o [0 1T 11 11 Y200 95
OSEENAOPALN ...t e e e e e e e e e naaeeeaaae s 95
L0151 (=] oo (o] =] 1Yo | SR PR TP 96
1@ 15 1=1 o o [0 =T o T] o PR 96
LT ST 1 1 T PSSR 97
PrOCESSBAICOUEtiiiiiiiei ittt ettt e e e e e e e e s s bbbt e e e e e e e e e e e nbbbeaeeaaaeeeaaannns 98
QUEIYVAIUEB ...ttt e oo ettt et e e e e e e s ab bbb et e e e e e e e e e snnbabbneeaaaeeas 99
[RY=T=To [0f0]0 1] = o] o AP UPR OO PPPPOPRRR 99
REASKAIQUESTIONS ..o s 100
REASKLASTQUESTION ... 101
RECEIVEEIMAIL ...ttt e ettt e e e e e e e s nae e e e e e e e e e e e e annes 102
RefreShACHVESCrEENHEAUETcoiviiiie it 103
ReEfreSNACHUVESCIEENLINEeviiiii it e e saaeee s 104
RefreShIODCAIENAAYcooie e e e e 104
RelatedMenuUItEMCIICKEAuiiiiiiiii et e e e e e e e e 104
RelatedScreenREfTESNDALAcccuviiiiiiiiiii e 105
RENAMEFIIE ...ttt e e st e e s nae et e e abb b e e e snneneeas 105
RepOrtMenuUItEMOCTICKEAuuiiiiiiiie ittt a e e e e e e e e e 106
R CT o] Fo ol ol = AP TP UUPTPPPRPRTTN 106
RoOUNATODECIMAIPTECISIONuiiiiiiiiiiie ittt ee e saaeee s 107
e o PO 107
RUNINVeNtoryRepIENISRIMENToooi i 108
RUNSYSTEMACHION ..ottt e e e e ettt e e e e e e s s nabbeeeeeaaeeeaeannns 109
SFo YIS o 1= T= (o 1] (== (P 109
SAVEVAIUETOSTONEeiiiiiiiieiie ittt ettt e ettt e e s snb bt e e s e bt e e s nbbe e e e enbaeeesennees 110
SENAEMAIMESSAQTEeeeeieiiieeie ettt ettt e e e e e e s e bbb e e e e e e e e e e aanbaabeeeaaaaeas 110
SenNdEMaIlMESSAgEEXTEINALuuiiiiiiiiii et a s 111
1= gle | IS 2l @ S o]] o AP P TP PR 112
1= g le | [T o PRSP 112
SENASIIINGTOPOIT ...t e e e e e et e e e e e e e e e s anbaabeeeeaaa s 113
SEtBOMINSTIUCTIONSeiiiiiiiieii ettt e e e e e e e e bbbt e e e e e e e e e e sanbabbeeeaaaaaas 113
SEtBOMLEAATIME ...iiiiiiiiiii ettt e e st e e s ab bt e e s anb b et e e s nnbbe e e e enbaeeeeennees 114
SEtBOMRUNDUIALION ..ottt ittt sttt e sttt e e st e e e s nbbe e e e enbae e e s enenes 114
SEtBOMSEIUPDUIALION ...ciiiiiiiiiiiiiei ettt e e e et e e e e e e e e s nbabbreeaaaaeas 114
SEISCIrEENPATAMETETccoiiiiiiii e aaaaaaaaaaaaes 115
Y2101 01 0 4 [0)7[@] o =T o (@] Lo 11 | PR 116

SetWorkflowObjectGradieNtCOIOUNcceeiiiiiiice e 116

8 Ostendo Scripting Support
175 SetWorkflowWODJECTHINT ... e 117
176 SetWOrkfloOWODBDJECITAQG . vvvviieeiii i e e e e e e s et eeeaaees 117
177 SetWOrkfloOWODBDJECITEXE ...vviii i e e s e e e e e e s s e e eaee s 118
178 SetWorkflowODJECTTIraNSPAIrENCYcoiiiiiiiiiiiiiiiiee ettt e et e e e e e e sraeeeeeaaae s 118
179 SetWorkflowODJECTVISIDIE ... 119
180 SNOWMESSAGE ..oieeeiiiiieiiiiieeie e e e e e sttt e e e e e e s s st eeeeeaesesaas st teaeeeaeeesaaassbaaeeeeeaeeesannnsnnanneeaeees 119
SN S L0 Y o o o | =SOSR 119
182 SSGEICEITEXL c.iviiiie ittt ettt ettt e sttt e e e s sttt e e e s tbe e e e e s taeaeesasbaeeesanbbeeeesantaeaeesnssanaeeans 120
183 SSGEICOIUMNCOUNL ...ttt ettt e e e e e e e ettt e e e e e e s e s aanbbbaeeeeaaaeessanrnbbeeeaaaaeas 121
184 SSGetConteNtCOIUMNCOUNTouviiiii ittt e et e e st e e s snbae e e s snebeeeeeans 122
185 SSGELCONTENTROWCOUNTceiiiiiiiiiie ittt e e e e e s e e e e e e s snrnr e eeeaee s 122
186 SSGEIROWECOUNT ...ttt ettt ee e e bbb e e e bbb 123
187 SSSEECEIITEXE ..oitiiiie it ettt e st e e e e st e e e s tbe e e e e s taeaeesssbaeeeeatbeeeesastaeeeesassaeaeeans 123
TS oo I 1 (=T T | (=== 124
HRSISINU] oo -1 (=1 nd o] | = 1ST=] OF- T o)l 40 o IS OO RPRE 124
190 WOIKFIOWACHVESCREIME ..ot e a e 125
191 WOrKFIOWCRANGESCNEME ...t e e e s 125
192 WOrKFIOWGEtLAYEIrVISIDIEcooiiiiiiiii et ee e 126
193 WOrkflowODbJeCILOAAPICIUIEvviiiiiiiiiie ettt ee e 126
194 WOrKFIOWSEetLayerViSibDIe ... 127
'Lookup' Numbers 128
Using Scripts within a Script 131
Standard Functions and
Procedures 133
Useful Scripts 134
Lo o) Lo o N 1= 0 0] o] = 1= RSP 134
2 DIStINCE VAIUE CRECK ... e e e e e e e e 139
3 KeY Daily STAtISTICS ..ooiiiiiiiiiiiiiiee ettt e et e e e e e e e e e s nbe e e eeaaaeeeeeannns 140
4 Re-Allocate PUrchase INVOICE LINEScooiiiiiiiiiiiiiic ettt 149
5 Upload a RepOrt t0 @ WEDSITEccooiiiiiiiiiicicc ettt e e e e e e e e e e e 151
Advanced Scripts 152
I T = B = 1 Y/ o T o | SR 152
A L=\ v W €] To I U o To F-1 1T] o | A S UPEERR 155
3 Call Centre - EMail IMPOTToeiiiiiiieiii et e e e e e e e e e e aaans 158
4 Import Timesheets from EXCElooo e 160
5 Microsoft Access Database EXAMPIEuueiiiiieoiiiiiciiiiece e er e e e e 161

Contents 9

6 MYOB Customer File CSV Import

10

Ostendo Scripting Support

Introduction

This reference help is intended to provide a guide as to what scripting functions and procedures
are available in Ostendo. Accompanying each function is a simple script that you can copy and
paste into the appropriate scripting area and then run the function to see how it works and what

results are obtained.

At the end of this Help are some practical examples of useful scripts that you can use and/or adapt

Scripting Use in Ostendo 11

2 Scripting Use in Ostendo

This section shows you where scripts can be run along with examples to demonstrate each option
e Custom Menu Script: A Custom Menu Script can be run in the following ways:

e Ostendo’'s Main Menu: Adds the Script Name to the drop-down under ‘Custom’ on
Ostendo’s main menu

e Command Line Script: This allows you to run a script from the Command Line of
your computer. This is very useful if, for example, you wish to run the script as part
of your computer’s overnight batch process.

e Desktop Icon Script: This allows you to run a script from a Desktop Icon without
the necessity of starting up Ostendo.

e Related Menu Script: Adds the Script Name to the drop-down Menu held against the *
Related’ button within specific screens.

e Order Script: This allows you to create a Script specific to a preselected Order

e Screen Data Script: Related to Master, Order, Receiving, and Invoicing Screens where the
action of Adding or Deleting a record or changing any field within the record will
automatically run this Script

e Workflow Script: These are scripts that can be used to change the appearance and/or
Text of a Workflow Obiject.

e Report Layout Editor: Scripts to control many printing options such as printing fields under
certain data conditions, etc

2.1 Custom Menu Script
This Type of script can be used in many areas of Ostendo such as:
e Main Menu Script
e Desktop Icon Script

e Command Line Script

2.1.1 Main Menu Script

Adds the Script Name to the drop-down under ‘Custom’ on Ostendo’s main menu. Selecting this
will run the Script. This style of Script can be:

= Available to all

= Restricted to Administrator

= Restricted to specific Users

Examples of the types of script are:
= Updating your existing system with information from Ostendo
= Updating Ostendo with information from your existing system
= Importing Supplier Catalogues
= Send user-defined KPI information via email, or to a Mobile phone

12

Ostendo Scripting Support

2.1.2

To see how this works you can try the following exercise in which we will get an existing Job that
was inadvertently created as an Order and we want to change the status to ‘Quote’.

Go into File>Custom Scripts and add a new Custom Script called (say) Job Quote. ‘Check’ the *
All Users’ radio button to make this script available to all users. In the ‘Script’ tab enter the
following:

var
TheJobNumber: String;
TheCurrentStatus: String;
AreYouSure: String;
begin
TheJobNumber := AskMandatoryQuestionWithLookup('Job Number','Select Job Number',
1075);
TheCurrentStatus := GetStringFromTable((JOBHEADER',ORDERSTATUS',
'ORDERNUMBER', TheJobNumber);
AreYouSure := AskQuestion(‘Confirm this is the Job', TEXT','Are you sure you wish to
change ' + TheJobNumber + ' to a Quote','[d]Yes,No");
if AreYouSure ='Yes' then

begin

executeSQL(‘'update JobHeader set OrderStatus = "Quote" where OrderNumber =" +
TheJobNumber + ");

executeSQL('delete from OrderRequirements where DemandOrderType = "Job" and
DemandOrderNumber = " + TheJobNumber + ");

end;
end.

Save and exit the Custom Script screen

You will see a new entry ‘Custom’ on the top toolbar of Ostendo. If you click on this then your
Script ‘Job Quote’ will be displayed. If you click on this you will be taken through the script after
which the Job Status will be updated to ‘Quote’

Desktop Icon Script

This allows you to run a script from a Desktop Icon without the necessity of starting up Ostendo.

To see how this works you can try the following exercise in which we will determine the number of
Sales Orders created today.

Go into Sales>Sales Orders and create a couple of Orders
Go into File>Custom Scripts and add a new Custom Script called (say) SalesToday.
In the ‘Script’ tab enter the following:

/I Define the Variable
Var
OrdersToday: String;
/I You can then get the number of Sales Orders created today
Begin
OrdersToday := GetSQLResult('Select Count(*) from SalesHeader where OrderDate =
"now™);
Showmessage('There are ' + OrdersToday + ' Orders Today");
End.

Scripting Use in Ostendo 13

2.1.3

To run the script from a Desktop Icon carry out the following. On your Desktop ‘Right Mouse’ on
your existing Ostendo Icon that points to this 'DEMO' Company database and then copy and paste
to create another Desktop Icon. On the copied Icon ‘Right Mouse’ and select ‘Properties’. In the
‘Target’ field extend the target reference to the following

"C:\Program Files\Ostendo\ostendo.exe" STARTUPID:DEMO SCRIPT=SalesToday
and save the changes

If you now double-click on the Icon it will run the script

Command Line Script

This allows you to run a script from the Command Line of your computer. This is very useful if, for
example, you wish to run the script as part of your computer’s overnight batch process.

To see how this works you can try the following exercise in which we will determine the number of
Sales Orders created today. We will then run this script from the Command Line on your PC

Go into Sales>Sales Orders and create a couple of Orders
Go into File>Custom Scripts and add a new Custom Script called (say) SalesToday.
In the ‘Script’ tab enter the following:

I/ Define the Variable

Var

OrdersToday: String;
I/l 'You can then get the number of Sales Orders created today

Begin

OrdersToday := GetSQLResult('Select Count(*) from SalesHeader where OrderDate =
lanWlll);

Showmessage('There are ' + OrdersToday + ' Orders Today");
End.

Open Notepad on your PC then copy and paste the following
"C:\Program Files\Ostendo\ostendo.exe" STARTUPID:DEMO SCRIPT=SalesToday
where "C:\Program Files\Ostendo\ostendo.exe" points to the Ostendo executable
STARTUPID:DEMO defines the Database to look at
SCRIPT=SalesToday defines the script name within the Database

‘Save’ this as a .bat file (for example SalesToday.bat) directly under 'C' drive

To run the .bat file from a Command Line click on ‘Start’ on your Windows screen and select ‘Run’
. On the presented panel enter ‘CMD’ and click the ‘OK’ Button. Go back to the Root Directory
(Hint: Enter cd .. to go back one level.). You should end up with C:\>

Type in the .bat file name (Example: SalesToday) to give C:\>SalesToday and hit the ‘Enter’ key
on your keyboard to run your script

14 Ostendo Scripting Support
2.2 System Action
This allows you to create a Script that is run prior to displaying a specified screen. This could, for
example, enable you to define what the User can or cannot view in the nominated screen
To see how this works you can try the following exercise in which we will substitute the Inquiry -
Items screen in place of the Item Master screen. This will allow the User to View Item Data but not
maintain it
Go into File>Custom Scripts and add a new System Action Script called (say) ItemView. From
the drop-down list against field System Action select Inventory/ltems
In the ‘Script’ tab enter the following:
begin
If CurrentUser = 'ADMIN' then
Ostendolnquiry('Inquiry - Items");
Abort ;
end.
The first line defines the user to which this action applies
The second line states that the Inquiry screen ‘Inquiry - ltems' should be run
e The third line aborts the request to display of the ltem Master screen.
It is important to always include the ABORT statement in the System Action script so
that the usual action is not executed.
If this statement is not included, then the normal action will still run AFTER the System Action
script is executed.
Now go into Inventory>Items and you will see that, because you are currently signed on as
ADMIN, you will be directed to the Inquiry - Items screen
2.3 Custom Screens

There are two types of Custom Screens that you can create

1. Custom Data Screens Enable the User to create Custom Screens that provide the following
options

Display Types: The Screen itself can be Inquiry only, Data Entry only or a combined
Inquiry/Data Entry

Data Entry Styles: You have the option to use a Computer Keyboard, Graphical Keyboard,
Touch Screen, or Barcode Scanner. All four can be utilised in the same Custom Data Screen.
Data Options: This can include Open format entry, validated against data within the Custom
Data Script, or validated against Ostendo data.

Data Storage Options. The data being entered can be held in temporary storage for ‘Batch
Posting’ into Ostendo or posted immediately - a single record at a time. If the data is held in
temporary storage it can be held in non-Ostendo files and subsequently recalled into the data
screen.

This style of screen requires the use of Ostendo’'s Graphical generator.

2. Data Entry Screens where you can define what data is to be collected and create a multi-line
Data entry form into which the data is entered. The resultant records can be actioned as required

You can get more information on creating these types of screen in the Training Guide found under

Scripting Use in Ostendo 15

2.4

2.5

Help on Ostendo's top toolbar

Related Menu Script

Adds the Script Name to the drop-down Menu held against the ‘Related’ button within specific
screens. The Related script can optionally take key information from the current screen and show
specific - related - information. In the following example we will add a Related Script called ‘Job
Customer’ and whenever you are in a Job Screen this script will take you to the Customer Detalil
screen related to this Order’s Customer

Go into File>Custom Scripts and create a new Script called ‘Job Customer’. In the ‘Detail’ tab *
check’ the ‘Add to this Screen’ checkbox and select ‘Job Orders’ from the drop-down list in the
adjacent field. In the ‘Script’ tab add the following script

begin
RunSystemAction(‘'Sales', 'Customers');
SetScreenParameter(KEYFIELD=CUSTOMERY);
SetScreenParameter(KEYVALUE=" + GetSourceFieldValue(CUSTOMER);
SetScreenParameter('TABINDEX=1"); // This will open up in the Customer ‘Detail’

screen rather than the ‘List’ screen

end.

Save and exit the Custom Script screen.

Go into Jobs>Job Orders and click on the ‘Related’ button. You will find that the ‘Job Customer’
Custom Script appears in the drop-down list. If you select this then the script will bring up the
Customer Screen relating to this Job Order.

Order Script

This allows you to create a Script that is run against an Order as a whole in the following areas:
= Assembly

Jobs

Sales

Purchase

POS

and enables you to add extra specific functionality such as:

= Total Order Value discounting based on Order content
Freight calculations based on Order content
Order Authorisation Levels (Example: User Purchasing levels)
Order Margin Control with User-defined Margin levels
Order Validation and/or Checks
Workflow actions (Example: send Email regarding this Order)
Promotions (Example: 3 for price of 2, etc)

To see how this works you can try the following exercise in which we will create a Sales Order
Script that will return the Order Customer’s Name which when confirmed will allow the order to
proceed.

Go into File>Custom Scripts and add a new Custom Script called (say) OrderCust. ‘Check’ the *
This is an Order Script’ checkbox. To define if this script must be acknowledged before the
Order can proceed you should also ‘check’ the ‘Mandatory’ checkbox.

In the ‘Script’ tab enter the following:

16

Ostendo Scripting Support

2.6

var

TheCustomer: string;

begin
TheCustomer := GetSourceFieldValue(CUSTOMERY);
showmessage(TheCustomer);
OrderScriptRun(True);

end.

e The first line defines a variable

e The 3rd line populates this variable with the contents of the CUSTOMER field in the
SALESHEADER record

e The 4th line displays the content of the variable when the script is run

o The5Mline updates the OrderScriptRun field in the SALESHEADER record with ‘True’
to denote that the Order Script has been run

The next step is to tell Ostendo that the script is linked to a Sales Order. To do this go into
File>System Configuration>Order Scripts and create a new record containing the following
Screen: Select ‘Sales Orders’ from the drop-down
Script Name: Select OrderCust

Now go into Sales>Sales Orders and create a Sales Order then add a line to the Order. If you try
and pick a line then you will be presented with an error message stating that OrderCust needs to
be run’. l.e. OrderScriptRun field in the SALESHEADER record is currently set to ‘False’.

You will see a new button (OrderCust) on the Batch Entry Bar of the Sales Order Lines screen.
If you click on this button then the script will be run. This will return the Customer Name to the
screen in addition to amending the OrderScriptRun field in the SALESHEADER record to ‘True’,

You can now continue with picking the Sales Order lines

Screen Data Script

This is related to Master, Order, Receiving, and Invoicing Screens where the action of Adding or
Deleting a record or changing any field within the record will automatically run the Script to provide
a resultant action. For example
= Zero Price Check on Sales Order Lines
Update Sell Price based on Last receipt Cost
In Purchasing check for best price from all Suppliers
Have a pop-up Sales Message appear
Specify a minimum order quantity
Show active Promotion when Sales Line Entered

To see how this works we will create a Custom Script that will block any Price or Cost change to
an Order Line if the resultant margin falls below the value defined in the System Settings screen.

Go into File>System Configuration>System Settings and amend field ‘Min Allowable Margin%
"to 50.

Now, go to File>Custom Scripts and add a new Custom Script called (say) Margin Check and *
check’ the ‘This is a Screen Data script’ checkbox. Click on the ‘Script’ tab and add the following
script

var
TheMinMargin, TheUnitPrice, TheUnitCost, TheCalcMargin: double;

Scripting Use in Ostendo 17

ThelntValueofMargin: integer;
begin
TheMinMargin := GetDoubleFromTable(
'SYSTEMMASTER','MINMARGINPERCENT',',COMPANYACCOUNTINGID','100";
TheUnitCost := GetCost(queryvalue('CODETYPE"),queryvalue('LINECODE));
TheUnitPrice := strtofloat(queryvalue(ORDERUNITPRICE"));
if (TheUnitPrice <> 0) then
begin
TheCalcMargin := (((TheUnitPrice - TheUnitCost)/ TheUnitPrice) * 100);
if (TheCalcMargin < TheMinMargin) then
begin
ThelntvalueofMargin := int(TheCalcMargin * 100);
TheCalcMargin := (ThelntValueofMargin /100);
messagedIg(‘A ' + floattostr(TheCalcMargin) + ' % margin is below the Company
Minimum of ' + floattostr(TheMinMargin) + ' %', mtinformation,mbOK,0);
{Comment out the abort function below if you just want to display a message only}
abort;
end
end
else
begin
if (TheUnitCost > 0) then
messagedIg(‘'This line has a Zero Price with a Cost',mtinformation,mbOK,0);
end;
end.

Save and exit the Custom Script screen.

The next step is to tell Ostendo that the script is linked to a Sales Order Line. To do this go into
File>System Configuration>Screen Data Scripts and create a new record containing the
following

Screen: Select ‘Sales Orders’ from the drop-down

Table Name: Select ‘SALESLINES’ from the drop-down list

SQL Type: Select ‘Insert’

Script Name: Select the above script Name
Save and exit

Now go into Sales>Sales Orders and create a Sales Order then add a line to the Order. If you
amend the sell price against the Item such that the resultant price falls below the above Margin
then you will get a message returned and you will be prevented from saving the line.

This covers the situation where you are adding a new Sales Order Line but what about if you are
amending an existing line. This can be covered by going back into File>System
Configuration>Screen Data Scripts and create another record containing the following
Screen: Select ‘Sales Orders’ from the drop-down
Table Name: Select ‘SALESLINES’ from the drop-down list
SQL Type: Select ‘Update’
Script Name: Select the above script Name
Save and exit

2.7 Workflow Script

These are scripts that can be used to change the appearance and/or Text of a Workflow Object.
These include amending the Text, Colour, Hint, Visible/Hide, etc.

To see this in action we will change the colour of a Workflow Object.

18 Ostendo Scripting Support
You should start by bringing a workflow to the desktop. If you don't have a workflow of your own
then you should use the workflow supplied with Ostendo. To bring this to the desktop carry out the
following.
Click on File>System Configuration>User Security and Options and click on the ‘Workflow’
tab. In that screen ‘check’ the ‘Enable Workflow’ checkbox then click in the centre of the lower
panel. Click the ‘Add’ button and add the following line:
Caption: Workflow
Filename: Locate SampleWorkflow.dat which can be found under the Ostendo folder
Sequence: Leave ‘as is’
Save and close out of the screen. You will find that the workflow now displays on your Ostendo
Desktop.
In the workflow screen (NOT on an object) ‘right mouse’ and select ‘Edit Workflow’. The
Workflow Editor will start up. In the Editor click on and object (to select it) then note the ID number
in the Inspector Options (down the right hand side). If you have used Workflow
SampleWorkflow.dat then you will find that the ‘Customers’ Object will have an ID of 32.
Go into File>Custom Scripts and add a new Custom Script called (say) Workflow. In the ‘Script’
tab enter the following:
Begin
SetWorkflowObjectColour(32,claqua);
Showmessage('Colour Updated);
End.
Where 32 is the Object ID
Save and exit
If you now run the Script (Custom>Workflow) you will see that the fill colour of the Object will take
place.
2.8 Report Layout Editor

Scripting can be used in the Report Layout Editor to control many printing options such as printing
fields under certain data conditions, etc. There are two main elements in the Report that controls
the script.

When is the action to take place
What action is to take place

To demonstrate this go into File>Reporting Configuration>Report and View Developer and
click the ‘Add’ button. Copy the ‘Item Detail Sheet’ to your Company Reports folder. Select the
copied report and click on the ‘Master Settings’ tab then on the ‘Edit’ button. On the report layout
scroll down to the ‘Child4’ Band. You will see a small red triangle (?) in the band. This denotes
that it has some code linked to it. If you click on the Band then we will address this linked code as
follows

When is the action to take place: If you click on the ‘Events’ tab to the left of the screen you will
see that the ‘when’ is ‘OnBeforePrint’ and it relates to a script procedure in the adjacent field. (In
this instance Child4OnBeforePrint.)

What action is to take place: If you double-click on the Child4OnBeforePrint.it will take you to

Scripting Use in Ostendo 19

the ‘Code’ tab and position you at the Child4OnBeforePrint. Procedure. You will see that script
provides a visible = True or False depending upon the content of the Notes field

Ostendo Scripting Support

Basic Script Structure

The Basic Script Structure is broken down into 4 main sections.

The Variables Section

A variable is a user-defined attribute against which you can evaluate and store an evaluated result
for output or further action. Multiple variables can be declared under a heading var. For
Example:

Var
TheCustomerName: String;
ThelnvoiceCount: integer;
ErrorFound : Boolean;

Each variable is declared using the same standard format;

VariableName your defined name — No Spaces
: Colon to denote the end of the VariableName
Format The Format of the data

; Semi-colon to denote end of variable
The more common Formats are:
String — AlphaNumeric characters
Double — Number with decimals
Integer — Number with no decimals
Boolean — True or False

However you can also use the following:

Byte: Same as Integer

Word: Same as Integer

Integer: Basic Integer (Whole numbers only)

Longint: Same as Integer

Cardinal: Same as Integer

Tcolor: Same as Integer

Boolean: Returns True or False

Real: Same as Extended

Single: Same as Extended

Double: Same as Extended

Extended: A floating point type with the highest capacity and precision
TDate: Data type holding a date value (Same as Extended type)
TTime: Data type holding a time value (Same as Extended type)
TDateTime: Data type holding a date and time value (Same as Extended type)
Char: Variable type holding a single character

String: A data type that holds a string of characters

Variant: A variable type that can hold changing data types

Array: An Array type

The Constants Section

A Constant is a user-defined value that can be referenced at any time within the script
Multiple Constants can be declared under a heading const. For Example:

Basic Script Structure 21

Const
pi = 3.14159;
e =2.71828496

Each constant is declared using the same standard format;

ConstantName your defined name — No Spaces
= Equals sign

Value The defined value of the constant
; Semi-colon to denote end of declared constant

The Main Process

The Main Process is a user-defined routine than performs a required activity. A simple example of
a Main Process is:

var
MyValue: Integer;

begin
MyValue = 1;
Showmessage(Myvalue + Myvalue);

End.

You should note the following

A Var is only required if you are storing a result as opposed to the script (say) updating a
record.

The process itself has a Begin and End Statement

Each instruction within the process ends with a semi-colon

The final End statement ends in a full-stop

The Procedure Section

If a process is used more than once within the script you can avoid retyping the process by
declaring a Procedure. A Procedure is a user-defined routine than performs a required activity.
This allows you to simply call the Procedure Name whenever you require this process to be carried
out.

A procedure can comprise of its own declared Variables as well as the process itself, For example

procedure FirstProcedure;
var
MyValue: Integer;
begin
MyValue :=1;
Showmessage(Myvalue + Myvalue);
End;

Begin
FirstProcedure;
End.

Comments
A couple of notes to complete this introduction:

22 Ostendo Scripting Support

1. You can place comments in the script in one of two ways
/I Anything on this line after the ‘double slash’ is ignored

{ Anything that is contained within ‘squiggly Brackets’ is ignored. This can go over many
lines}

2. Pre-defined functions are ‘Procedures’ designed by Development-X that allow you enter simple
information to perform a complex activity. These are shown in the next section

Constants, Variables, Functions, Procedures 23

4.1

4.2

Constants, Variables, Functions, Procedures

The following script Constants are designed specifically for use in Ostendo.

Abort

For use with
Screen Data Script

Format: Abort;

This function is used where the script carries out a user-defined check and, if a condition occurs,
abort the current transaction. This can be used for example to check if a Sales Line margin has
been achieved and - if not - stop the current Sales order Line entry. The element that makes up
this function is a simple ‘Abort’ statement. In the following example the Order Sell Price is
compared against the default margin set up in System Settings and if the Margin is not met the line
entry is ended with the ‘Abort’ function

var
TheMinMargin, TheUnitPrice, TheUnitCost, TheCalcMargin: double;
ThelntValueofMargin: integer;
begin
TheMinMargin := GetDoubleFromTable(
'SYSTEMMASTER',MINMARGINPERCENT',COMPANYACCOUNTINGID','100";
TheUnitCost := GetCost(queryvalue('CODETYPE"),queryvalue('LINECODE));
TheUnitPrice ;= strtofloat(queryvalue((ORDERUNITPRICE"));
if (TheUnitPrice <> 0) then
begin
TheCalcMargin := (((TheUnitPrice - TheUnitCost)/ TheUnitPrice) * 100);
if (TheCalcMargin < TheMinMargin) then
begin
ThelntValueofMargin := int(TheCalcMargin * 100);
TheCalcMargin ;= (ThelntValueofMargin /100);
ShowMessage('A "' + floattostr(TheCalcMargin) + ' % margin is below the Company
Minimum of ' + floattostr(TheMinMargin) + ' %");
{Comment out the abort function below if you just want to display a message only}
abort;
end
end
else
begin
if (TheUnitCost > 0) then
Showmessage('This line has a Zero Price with a Cost");
end;
end.

AddContactsToOutlook

This procedure enables you to add Ostendo Contacts to your Microsoft Outlook Address Book

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

24

Ostendo Scripting Support

4.3

Format: AddContactsToOutlook(ContactDetails);
ContactDetails: These are the field details from Ostendo

This will copy selected Ostendo Contacts (found under CRM>Contacts) to Outlook Address Book.
This example shows ‘hard-coded’ fields but you can, of course, populate these with selected
records from your Contacts List
begin
AddContactsToOutlook('ContactName=Ken_Jolly'

+ ' FirstName=Ken'

+ " Title=Mr'

+ ' ,Position=Driver’

+',LastName=Jolly"

+ ' ,Phone=555-1111"

+ ' |Fax=444-2222'

+ ' ,Mobile=333-1111"

+',CompanyName=KJ'

+ ',EmailAddress=kj@kj.com'

+ ',ContactNotes=Good Driver'

);
Showmessage('Copy Done');
end.

AddRelatedMenultem

For use with
Edit View Scripts

Format: Function AddRelatedMenultem(‘Screen Name’);

This Function is used in combination with procedure RelatedMenultemClicked and allows you to
add a Related Screen to the ‘Related’ Button in the Edit View Panel

The elements that make up this function are:
Screen Name: The Name of the Screen to be called

In the following example we will assume that you already have created an Edit View and we are
going to add a report to the ‘Related’ button in that view.

Procedure determines the ‘Index Number’ in the List of Related Items displayed under the ‘Related
" button.
To get the Index Number add the following to the end of the Edit View Script.

Begin
AddRelatedMenultem('Screen Name");
End.
Where you should replace 'Screen Name' with the actual name of your screen.

If you go into the Edit View then you will see this option presented when you click on the ‘Related’
button. Now let us run Procedure RelatedMenultemClicked.

If it is the only report under the Related button then its Index will be 0 therefore add this to the Edit
View Script under the RelatedMenultemClicked Procedure.

Constants, Variables, Functions, Procedures 25

4.4

procedure RelatedMenultemClicked(Menulndex: Integer);
begin
If Menulndex = 0 then
begin
RunSystemAction('General','Knowledge Base");
end;
end;

If you go into the Edit View and select this under the ‘Related’ button you will find that the
Knowledge Base screen will be run.

AddReportMenultem

For use with
Edit View Scripts

Format: Function AddReportMenultem(‘Report Name’);

This Function is used in combination with procedure ReportMenultemClicked and allows you to
add your Report or Analysis View to the ‘Reports’ Button in the Edit View Panel

The elements that make up this function are:
Report Name: The Name of the Report as it appears in the Report and View Deloper

In the following example we will assume that you already have created an Edit View and we are
going to add a report to the ‘Reports’ button in that view.

Procedure determines the ‘Index Number’ in the List of Reports displayed under the ‘Reports’
button.
To get the Index Number add the following to the end of the Edit View Script.

Begin
AddReportMenultem('Report Name');
End.

Where you should replace 'Report Name' with the name of your Report.

If you go into the Edit View then you will see this option presented when you click on the ‘Reports’
button. Now let us run Procedure ReportMenultemClicked.

If it is the only report under the Reports button then its Index will be 0 therefore add this to the Edit
View Script under the ReportMenultemClicked Procedure.

procedure ReportMenultemClicked(Menulndex: Integer);
begin
If Menulndex = 0 then
begin
OstendoReport('Report Name');
end;
end;

If you go into the Edit View and select this under the ‘Reports’ button you will find that the report
will be run.

26

Ostendo Scripting Support

4.5

4.6

AllocateToJobOrder

For use with
General Custom Scripts

Format: AllocateToJobOrder(OrderNumber, TaskName, LineCode, CodeType, LineUnit,
LineDescription, LinkedCatalogueName, AllocSysID);

Within Ostendo when you create a Purchase Order, Receive Goods without a prior Purchase
Order, or Receive an Invoice without a prior Receipt you have the option to create a Job Order
Line and a ‘Line Source’ record that is linked to this Order, Receipt, or Invoice. This function:
e Allows you to carry out the above action when importing Invoices from a file or document
received from your Supplier.
e Allows you to also allocate a Purchase receipt and/or Purchase Invoice to a Job Order
subsequent to the Receipt or Invoice being entered into Ostendo

The elements that make up this function are:
OrderNumber: The existing Job Order to which the Purchase Order, Receipt, or Invoice is
being allocated.
TaskName: The Task Name currently held within the Job Order
LineCode: The Item, Descriptor, Catalogue Code, or Kitset Code that is being allocated
CodeType: This relates to the Line Code and must be one of ‘Iitem Code’, ‘Descriptor
Code’, ‘Kitset Code’, or ‘Catalogue Code’
LineUnit: The Unit of Measure of the Line Code. This must be valid for the Line Code.
LineDescription: A Description of the Line Code. This can be any description and is not
validated against the base LineCode record
LinkedCatalogueName: If the CodeType is ‘Catalogue Code’ then you must also provide
a valid Catalogue Code Name that currently exists in Ostendo.
AllocSysID: This is the SysUniquelD of the Order, Receipt, or Invoice Allocation line.
This is passed through to the Job Line’s ‘Line Source’ record

An example showing how you can allocate a previously entered Purchase Invoice to a Job Order
can be seen as ‘Reallocate Purchase Invoice Lines’ in the ‘Useful Scripts’ section of this Help
Guide

AskMandatoryQuestion

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := AskMandatoryQuestion(Question, QuestionType, FullExplanation,
[d]ValueList, DefaultValue);

This type of question includes a defined list from which the answer must be selected The
elements that make up this function are:

Variable: The defined variable against which the result will be held.

Question: Define the question (max 200chars) enclosed in ‘commas’

Question Type: This is INTEGER, TEXT, NUMERIC, DATE, BOOLEAN, or TEXT LIST

Full Explanation: A longer explanation that can be referenced during configuration

[d]: Optional entry to define a default display entry from the List

Value List: Allowable options - separated by a comma

Default Value: Optional Entry to prefill question with current answer if re-doing questions

Constants, Variables, Functions, Procedures 27

4.7

The following example defines a Variable ‘TimberType’ and then asks the question from which
either Pine or Rimu is selected. After selection a message will be presented showing the value
now held in variable TimberType

/I Define the Variable
Var
TimberType: String;
/I 'You can then ask the question to answer TimberType using
Begin
TimberType := AskMandatoryQuestion('Please select the type of Timber ', TEXT',
'Rimu provides a better finish','[d]Pine,Rimu’, TimberType);
Showmessage('Your selection is ' + TimberType);
End.

AskMandatoryQuestionWithLookup

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := AskMandatoryQuestionWithLookup(Question, FullExplanation,
Lookuplndex, DefaultValue);

This type of question includes a link to an Ostendo Table from which the answer must be selected

The elements that make up this function are:
Variable: The defined variable against which the result will be held.
Question: Define the question (max 200chars) enclosed on ‘commas’
Full Explanation: A longer explanation that can be referenced during configuration
LookuplIndex: The Index Reference of the Ostendo Table
Default Value: Optional Entry to prefill question with current answer if re-doing questions

The following example defines a Variable ‘Selecteditem’ and then asks the question. The
drop-down list shows data from the defined Ostendo table (See Appendix A). After making a
selection a message will be presented showing the value now held in variable Selectedltem

/I Define the Variable
Var
Selectedltem: String;
/I 'You can then ask the question to answer Selectedltem using
Begin
Selectedltem := AskMandatoryQuestionWithLookup('Please select the Item
Number','User Defines what is to be used',1004,Selectedltem);
Showmessage('Your selection is ' + Selectedltem);
End.

28

Ostendo Scripting Support

4.8

4.9

AskQuestion

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := AskQuestion(Question, QuestionType, FullExplanation, ValueList,
DefaultValue);

This type of question can optionally include a defined list from which the answer may optionally be
selected The elements that make up this function are:

Variable: The defined variable against which the result will be held.

Question: Define the question (max 200chars) enclosed on ‘commas’

QuestionType: This is INTEGER, TEXT, NUMERIC, DATE, BOOLEAN, or TEXT LIST

FullExplanation: A longer explanation that can be referenced during configuration

[d]: Optional entry to define a default display entry from the List

ValueList: Allowable options - separated by a comma

Default Value: Optional Entry to prefill question with current answer if re-doing questions

The following example defines a Variable ‘OptionSelect’ and then asks the question from which
you can (optionally) type in an answer. After keying in the option a message will be presented
showing the value now held in variable OptionSelect

/I Define the Variable

Var

OptionSelect: String;

/I 'You can then ask the question to answer OptionSelect using

Begin
OptionSelect := AskQuestion('Please Type in your option', TEXT','You can leave
blank if you wish',");
Showmessage('Your selection is ' + OptionSelect);

End.

AskQuestionNumericRange

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := AskQuestionNumericRange(Question, QuestionType, FullExplanation,
MinValue, MaxValue, Numberinc, DefaultValue);

This type of question includes a minimum and maximum range along with - optionally -
incremental steps. The elements that make up this function are:
Variable: The defined variable against which the result will be held.
Question: Define the question (max 200 chars) enclosed on ‘commas’
Question Type: this is either NUMERIC or INTEGER
Full Explanation: A longer explanation that can be referenced during configuration
MinValue: The numeric value denoting the minimum value allowed during data entry
MaxValue: The numeric value denoting the maximum value allowed during data entry

Constants, Variables, Functions, Procedures 29

4.10

Numberinc: A numeric value denoting the incremental steps within the range. If nothing
is entered then any value in the range will be accepted.
Default Value: Optional Entry to prefill question with current answer if re-doing questions

The following example defines a Variable ‘DeskLength’ and then asks the question from which you
enter the length. After keying in the Length a message will be presented showing the value now
held in variable DeskLength

/I Define the Variable
Var
DeskLength: Integer;
/I 'You can then ask the question to answer DeskLength using
Begin
DeskLength := AskQuestionNumericRange('Please enter the Length (mm) of the
Desk', 'INTEGER','We can only make desks between 1000mm - 3000mm in
length',1000,3000,10,DeskLength);
Showmessage('Your Desk Length is ' + inttostr(DeskLength));
/I Note how we converted from Integer to String to complete the message
End.

AskQuestionWithChecklist

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := AskQuestionWithChecklist(Question, FullExplanation, ValueL.ist);

This type of question includes a pre-defined list from which multiple selections can be made. The
elements that make up this function are:
Variable: The defined variable against which the result will be held.
Question: Define the question (max 200chars) enclosed on ‘commas’
FullExplanation: A longer explanation that can be referenced during configuration
ValueList: Allowable options - separated by a comma

The following example defines a Variable ‘OptionsSelect’ and then asks the question from which
you can ‘check’ one or more entries. After clicking the ‘Answer’ button a message will be
presented showing the values now held in variable OptionsSelect

/I Define the Variable
Var
OptionsSelect: String;
/I ' You can then ask the question to answer OptionsSelect using
Begin
OptionSelect := AskQuestionWithChecklist('Please Select your options',"You can leave
blank if you wish','Blue,Green,Red’);
Showmessage('Your Selections are ' + OptionsSelect);
End.

30

Ostendo Scripting Support

411

4.12

AskQuestionWithDBChecklist

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := AskQuestionWithDBChecklist(Question, FullExplanation,
CheckListSQL);

This type of question includes a link to an Ostendo Table from which multiple selections can be
made. The elements that make up this function are:
Variable: The defined variable against which the result will be held.
Question: Define the question (max 200chars) enclosed on ‘commas’
Full Explanation: A longer explanation that can be referenced during configuration
CheckListSQL: The Query that extracts the fields. These are displayed in a drop-down
list during the question/Answer process

The following example defines a Variable ‘SelectedDescriptors’ and then asks the question. The
drop-down list shows data extracted via the Query. After making selection(s) a message will be
presented showing the value(s) now held in variable SelectedDescriptors

/I Define the Variable

Var

SelectedDescriptors: String;

/I 'You can then ask the question to answer ‘SelectedDescriptor’ using

Begin

SelectedDescriptors := AskQuestionWithDBChecklist('Please select the
Descriptor Codes','User selects what is to be used', 'Select * from
DescriptorMaster");

Showmessage(‘Your selections are ’ + SelectedDescriptors);
End.

AskQuestionWithLookup

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := AskQuestionWithLookup(Question, FullExplanation, Lookuplndex,
DefaultValue);

This type of question includes a link to an Ostendo Table from which the answer may optionally be
selected

The elements that make up this function are:
Variable: The defined variable against which the result will be held.
Question: Define the question (max 200chars) enclosed on ‘commas’
Full Explanation: A longer explanation that can be referenced during configuration
LookuplIndex: The Index Reference of the Ostendo Table
Default Value: Optional Entry to prefill question with current answer if re-doing questions

Constants, Variables, Functions, Procedures 31

The following example defines a Variable ‘SelectedDescriptor’ and then asks the question. The
drop-down list shows data from the defined Ostendo table (See section on ‘Lookup Numbers").
After making a selection a message will be presented showing the value now held in variable
SelectedDescriptor

/I Define the Variable

Var

SelectedDescriptor: String;

/I 'You can then ask the question to answer ‘SelectedDescriptor’ using

Begin
SelectedDescriptor := AskQuestionWithLookup('Please select the Descriptor
Code','User selects what is to be used',1010,SelectedDescriptor);
Showmessage('Your selection is ' + SelectedDescriptor);

End.

4.13 AskQuestionWithUserDefinedLookup

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := AskQuestionWithUserDefinedLookup(LookupSQL,Question,
FullExplanation, Lookuplndex, DefaultValue);

This type of question includes a Query that allows you to extract data to select records from which
the specific Variable value can be selected

The elements that make up this function are:
LookupSQL: A standard Query enclosed in single quotes
Question: Define the question (max 200chars) enclosed on ‘commas’
Full Explanation: A longer explanation that can be referenced during configuration
Default Value: Optional Entry to prefill question
LookupTitle: The title that will appear in the displayed panel
Result Field: The field from a selected record that returns the value
LookupHeight: Height of the displayed panel in pixels. Default = 320
LookupWidth: Width of the displayed panel in pixels. Default = 440

The following example defines a Variable ‘ThelLostQuote’ and then asks the question. The
drop-down list shows data from the Query. After making a selection a message will be presented
showing the value now held in variable TheLostQuote

/I Define the Variable
Var
TheLostQuote: String;
/I 'You can then select the data and ask the question for answering ‘TheLostQuote’ using
Begin
TheLostQuote := AskQuestionWithUserDefinedLookup('Select * from
SalesHeader where OrderStatus = "Lost™,'Select the Lost Sales Quote',",",'Select
Quote','OrderNumber’,350,500);
Showmessage('Your selection is ' + TheLostQuote);
End.

32 Ostendo Scripting Support

4.14 ClearValueStore

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: ClearValueStore;

This function will clear all values in store previously created by the SaveValueToStore function.

Begin
ClearValueStore;
End.

4.15 CloseOstendo

For use with
System Action Script
Standard Script
Related Script
Screen Data Script
Order Script

Custom Data Script

Edit View Script

Format: CloseOstendo
As the procedure suggests it closes the current copy of Ostendo.

Begin
CloseOstendo;
End.

4.16 CloseScreen

For use with
System Action Script
Standard Script
Related Script
Screen Data Script
Order Script

Custom Data Script

Edit View Script

Format: CloseScreen(Screen)

As the procedure suggests it closes the nominated Ostendo screen. In this example we will close

Constants, Variables, Functions, Procedures 33

4.17

4.18

the Items screen.

Begin
CloseScreen('ltems");
End.

ConvertToUniversalTime

Universal Time (UT) is a timescale based on the rotation of the Earth and is a modern continuation
of Greenwich Mean Time (GMT). All emails are sent using the Universal Time and adjusted by the
local time at the recipients email location. All Ostendo-generated emails, therefore, should be
converted to Universal Time before they are sent.

For use with
Order Scripts for use with email options

Format: Variable:= ConvertToUniversalTime(DateTime);

Variable: The defined variable against which the result will be held.
DateTime: The Date and Time to be converted to Universal Time

For example this script will take the current Date and Time from your computer and convert it to
Universal Time.

Var

CurrentDateAndTime: TDateTime;
DateAndTime: TDateTime;

begin

CurrentDateAndTime:= NOW;

DateAndTime:= ConvertToUniversalTime(NOW);

Showmessage('‘Current Date and Time ="'+ datetimetostr(CurrentDateAndTime) + #13
+ 'Universal Date and Time =" + datetimetostr(DateAndTime));
end.

CopyFile

This procedure enables you to copy any file on your network to any other location. This can
optionally be used in combination with Procedures DeleteFile, MoveFile, RenameFile and
CreateDir

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: CopyFile(Source File, Destination File, Overwrite);
Source File: The full path of the file to be copied
Destination File: The full path of the file at its destination
Overwrite: ‘True’ if you wish to overwrite any existing file of the same name, else ‘False’

In this example we will copy a file from the ‘C’ Drive to the ‘D’ Drive and overwrite the file if it
currently exists at the Destination.

34

Ostendo Scripting Support

4.19

4.20

begin
CopyFile('C:\Temp\CopyScript.doc','D:\CopyScript.doc', True);
Showmessage('File Copied");

end.

CreateDir

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script
Custom Data Screens
Data Entry Script

Format: CreateDir(Directory);

This will create a Directory on you network into which you would store information, etc, possibly
from other instructions within the whole script. Note: This function returns True to denote if the
Directory was created, or False if it was not created - for example due to permissions)

Directory: The full path of the Directory being created
In this example we will create a Directory ‘Scripts’ under the Ostendo Folder

Begin
CreateDir(‘C:\Program Files\Ostendo\Scripts’);
End.

Of course you would replace C:\Program Files\Ostendo\Scripts with the configuration you use on
your network

CurrentUser

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script
Custom Data Screens
Data Entry Script

Format: CurrentUser;

This is a Constant that is used to determine the User who is running the script and could include
that User ID in any actions derived from the script

In this example we will use the path related to your PC
Begin

Showmessage(CurrentUser);
End.

Constants, Variables, Functions, Procedures 35

421

4.22

4.23

4.24

CustomLineNotes

For use with
Custom Product Script

Format: CustomLineNotes;

This Custom Product Script variable allows you to construct Notes that will populate the Notes field
in the Sales or Job Order line created for this Custom Product.

Example:
CustomLineNotes('This product is made from' + #13 +
'Front: ' + FaciaMaterial + #13 +
'Side: ' + SideMaterial + #13 +
'‘Legs: ' + LegMaterial);

CustomOrderLinelD

For use with
Custom Product Script

Format: CustomOrderLinelD;

When used in a script this Custom Product Constant holds the current Line’s SYSUNIQUEID of
the Sales or Job Order. You may wish to use this in the remainder of the script.

For example, create the following Custom Product Script linked to an Item and then add the Item
to a Sales Order. The Sales Order Line’'s SYSUNIQUEID will be held against this Constant and
displayed in the Showmessage

Begin

Showmessage(CustomOrderLinelD);
End.

CustomProductCode

For use with
Custom Product Script

Format: CustomProductCode;
This Custom Product Script variable allows you to construct a Custom Product Code — usually
from answers made during the Configuration process. This is used in conjunction with
CustomProductCodeType
Example:

CustomProductCode(‘PC’, + Answerl + ‘-* + Answer2 + ‘Custom’);

CustomProductCodeType

For use with
Custom Product Script

Format: CustomProductCodeType;

36 Ostendo Scripting Support
This Custom Product Script variable allows you to specify what the Code Type of the generated
Product will be. The allowable options are ‘Item Code’, ‘Descriptor Code’, ‘Kitset Code’, or *
Catalogue Code’. This is used in conjunction with CustomProductCode to allow you to make a
Customised Product ID.
Example:
CustomProductCodeType('ltem Code’);
4.25 CustomProductCustomer
For use with
Custom Product Script
Format: CustomProductCustomer;
When used in a Custom Product script this Constant holds the current Customer for the configured
Product. This can then be used within the remainder of the script to determine Customer specific
values when designing a Custom Product
For example, create the following Custom Product Script linked to an Item and then add the Item
to a Sales Order. The Sales Order Customer will be held against this Constant and displayed in
the Showmessage
Begin
Showmessage(CustomProductCustomer);
End.
4.26 CustomProductDescription
For use with
Custom Product Script
Format: CustomProductDescription;
This Custom Product Script variable allows you to construct a Description of up to 100 characters
that will populate the Description field of the generated Sales or Job Order Line
Example:
CustomProductDescription('Stainless Steel Shelf Assembly ‘ + Length + ‘Mtrs Long and * +
Width + * Mtrs Wide");
4.27 CustomSalesOrderNumber

For use with
Custom Product Script

Format: CustomSalesOrderNumber;

When used in a Custom Product Script this Constant holds the current Sales or Job Order
Number. You may wish to use this in the remainder of the script.

For example, create the following Custom Product Script linked to an Item and then add the Item
to a Sales Order. The Sales Order Number will be held against this Constant and displayed in the
Showmessage

Constants, Variables, Functions, Procedures 37

4.28

4.29

4.30

431

Begin
Showmessage(CustomSalesOrderNumber);
End.

CustomSalesLinelD

For use with
Custom Product Script

Format: CustomSalesLinelD;

When used in a Custom Product Script this Constant holds the current Sales or Job Order Line
Number. You may wish to use this in the remainder of the script.

For example, create the following Custom Product Script linked to an Item and then add the Item
to a Sales Order. The Sales Order Line Number will be held against this Constant and displayed
in the Showmessage

Begin

Showmessage(CustomSalesLinelD);
End.

DataEntryCancel

For use with
Data Entry Scripts

This closes the Data Entry screen by setting the result of function DataEntryShow to False from
within the script. This, effectively, performs the same action as clicking the ‘X’ at the top of Data
Entry screen.

Format: DataEntryCancel,

DataEntryCellValueGet

For use with
Data Entry Scripts

This is used to get the value from a specific field within a record in the Table
Format: DataEntryCellValueGet(Recordindex, Columnindex);
The elements that make up this function are:

RecordIindex: The record number being addressed (starting from 0)
Columnindex: The field number in the record (starting from 0)

DataEntryCellValueSet

For use with
Data Entry Scripts

This function enables you to populate a specific field within a record with a defined value. The
format of this function is:

38

Ostendo Scripting Support

4.32

4.33

Format: DataEntryCellValueSet(Recordindex,Columnindex,CellValue);

The elements that make up this function are:
RecordIindex: The record number being addressed (starting from 0)
Columnindex: The field number in the record (starting from 0)
CellValue: The value to populate the field

DataEntryColumnCount

For use with
Data Entry Scripts

This function enables you to determine the number of columns in the Grid. The format of this
function is:

Format: DataEntryColumnCount;

DataEntryColumnCreate

For use with
Data Entry Scripts

This function is used to define the sequence and format of the data entry columns. The format of
this function is:

Format: DataEntryColumnCreate(Caption, ColumnWidth{Opt Default=100},
EditorType{Opt Default="TEXT'}, LookupIindex{Opt Default=0});

The elements that make up this function are:

Caption: The caption that populates the column heading

ColumnWidth: The width of the column

EditorType: Defines the format of the entry field. The options are
TEXT: Open format entry
DATE: Entry format as your Regional Settings
CALC: This allows you to enter a decimal number. You also have the option to
bring up a calculator to calculate the entered value.
CURRENCY: Format as your Regional Settings
SPIN: An Integer only entry allowed. This option also shows arrows from which
you can incrementally increase or decrease the displayed Integer
TIME: Entry format as your Regional Settings
CHECKBOX: A ‘Yes/No ‘Boolean’ checkbox
LOOKUP: Used in combination with LookUpIndex

LookUplIndex: This allows you to reference any Ostendo table that has a LookUpIndex.
(For a list of these refer to section ‘Condition Indexes’ in Ostendo Help covering ‘Reporting
l')

When using a LookUplIndex the EditorType must be LOOKUP. When answering the
guestion a drop-down list is presented showing the current entries in that Table from which
a selection can be made.

Constants, Variables, Functions, Procedures 39

4.34

4.35

4.36

4.37

DataEntryCreate

For use with
Data Entry Scripts

This function will create the Data Entry panel. The elements that make up this function are:

Format: DataEntryCreate(Title{Opt Default="Data Entry'}, FormHeight{Opt
Default=400}, FormWidth{Opt Default=550}););

Where the elements represent the following
Title: The Title that will appear at the top of the form

Height: The Height of the Form in Pixels
Width: The Width of the Form in Pixels

DataEntryFocusedColumnindex

For use with
Data Entry Scripts

This function returns the Column Index where the cursor is located within the grid. This can be
used, for example, to provide a reference for further processing data in a column using (for
example) DataEntryCellValueGet.

Format: DataEntryFocusedColumnindex;

DataEntryFocusedRecordindex

For use with
Data Entry Scripts

This function returns the Record Index of the record where the cursor is located within the grid.
This can be used, for example, to return the selected record index when OK is clicked, thus
emulating a ‘Lookup’ selection.

Format: DataEntryFocusedRecordIindex;

DataEntryNewRecordValuesSet

For use with
Data Entry Scripts

This function enables you to prefill fields when creating records. The format of this function is:
Format: DataEntryNewRecordValuesSet(RecordValues);

The elements that make up this function are:
RecordValues: The default values in each filed separated by a comma

40

Ostendo Scripting Support

4.38

4.39

4.40

4.41

4.42

DataEntryOK

For use with
Data Entry Scripts

This closes the Data Entry screen and sets result of DataEntryShow to True from with script. This
is the same as the user clicking the OK button on screen. This function can be used to force the
close of the Data Entry if needed prior to the user closing it and the OK/Cancel.

Format: DataEntryOK;

DataEntryRecordCount

For use with
Data Entry Scripts

When you enter the records they are stored in a temporary table until you tell Ostendo what to do
with them. This function simply counts the number of records in this temporary table. The format
of this function is:

Format: DataEntryRecordCount;

DataEntrySetLabel

For use with
Data Entry Scripts

This function enables you to create a Label that appears across the top of the grid. The format of
this function is:

Format: DataEntrySetLabel(Title);
The elements that make up this function are:

Title: The Title of the Grid

DataEntryShow

For use with
Data Entry Scripts

This function simply instructs Ostendo to display the Entry Form

Format: DataEntryShow;

DataScreenActiveScheme

For use with
Data Screen Scripts

This function allows you to determine the Identity of the current Active Scheme
The elements that make up this function are:

Format: DataScreenActiveScheme(SchemelD);

Constants, Variables, Functions, Procedures 41

SchemelD: The Identifier of the Scheme which you are changing to

4.43 DataScreenChangeScheme

For use with
Data Screen Scripts

This function allows you to go to another Scheme in the same Ostendo Graphic.
The elements that make up this function are:
Format: DataScreenChangeScheme(SchemelD);

SchemelD: The Identifier of the Scheme which you are changing to.

4.44 DataScreenClose

For use with
Data Screen Scripts

This function is used to close the screen display.
The format of this function is:

Format: DataScreenClose:

4.45 DataScreenGetObjectText

For use with
Data Screen Scripts

This function is used to get the current content of a Graphical Object's ‘Text'.
Format: DataScreenGetObjectText(ObjectID);

The element that makes up this function is:
ObjectID: The Identifier of the Object in the Graphical and View Developer. The returned
Text from this Object would populate a defined Variable

To find the Object ID go into the Graphic and click on the Object. You will find the ID of the Object

in the adjecent ‘Inspector’ panel

4.46 DataScreenObjectLoadPicture

For use with
Data Screen Scripts

This function is used to load a Graphical Object with a picture.

Format: DataScreenObjectLoadPicture(ObjectID,Picture);

42

Ostendo Scripting Support

4.47

The elements that make up this function are:
ObijectID: The Identifier of the Object in the Graphical and View Developer. This MUST
be a ‘Picture’ Object
Picture: The full path of the picture enclosed in single quotes. For example ‘C:\Program
Files\Ostendo\MyPicture.jpg’

You should note that the Graphical Object must be a picture object.

DataScreenQuestion

For use with
Data Screen Scripts

This function is used to prompt for data entry. The result of the data entry populates the ‘Value’
held against the Question Index.

Format: DataScreenQuestion(Questionindex, Question, EditorType,
FullExplanation, ValueList, DefaultValue, Lookupindex);

The elements that make up this function are:
Questionindex: A sequential number, commencing at zero to denote the unique question
and the order in which the question is presented
Question: Define the question (max 200chars) enclosed in ‘Single Quotes’
EditorType: Defines the format of the answer. The options are
TEXT: Open format entry
DATE: Format as your Regional Settings
COMBOBOX: Creates a drop-down list of entries in Value List
CALC: This allows you to enter a decimal number. You also have the option to
bring up a calculator to calculate the entered value.
CURRENCY: Format as your Regional Settings
SPIN: An Integer only entry allowed. This option also shows arrows from which
you can incrementally increase or decrease the displayed Integer
TIME: Format as your Regional Settings
LOOKUP: Used in combination with LookUpIndex
If this is defined as blank (two single quotes) then TEXT is assumed.
FullExplanation: A longer explanation that is displayed during data entry
ValuelList: If you wish to select entries from a pre-defined list then you should enter the
allowable options - separated by a comma. When using a Value List the EditorType must
be COMBOBOX. When answering the question a drop-down list is presented showing
these options from which a selection can be made. You should note that this does NOT
prevent the user you from entering a value that is not in this list. You should exclude these
within your script
If you are not using this feature then define this with two single quotes
DefaultValue: If you are using a ValueList then you can enter a default Value that prefills
the data entry field
LookUplIndex: This allows you to reference any Ostendo table that has a LookUplIndex.
(For a list of these refer to section ‘Condition Indexes’ in Ostendo Help covering ‘Reporting
1.)
When using a LookUplIndex the EditorType must be LOOKUP. When answering the
guestion a drop-down list is presented showing the current entries in that Table from which
a selection can be made.

Constants, Variables, Functions, Procedures 43

4.48

4.49

4.50

4.51

DataScreenSaveGraphicalFile

For use with
Data Screen Scripts

This function will save the current changes by overwriting the source Graphical File. If this is not
run then, if the Data Screen is amended during the execution of the Script, any changes will not be
saved

Format: DataScreenSaveGraphicalFile;

DataScreenSetEditText

For use with
Data Screen Scripts

This function will move data into the input field. This could be, for example, a selected line from an
Ostendo Table, a hardcoded text, a ‘Touch Screen’ button, etc. The format is:.

Format: DataScreenSetEditText(‘YourText’);

The element that makes up this function is:
YourText: The text being set. This can be text entered here (defined in quotes) or can
refer to a Var

DataScreenSetObjectColour

For use with
Data Screen Scripts

This function allows you to amend the fill colour of an Object within the Graphical Data Screen.
The Object must not be currently set to ‘Gradient Fill'. The elements that make up this function
are:

Format: DataScreenSetObjectColour(ObjectID, ObjectColour);

Obiject ID: The Identifier of the Object in the Graphical Developer

ObjectColour: See the defined colours in the Graphical Editor. The Colour
selection is the standard colour preceded with the letters cl. For example you can
enter either clAqua

DataScreenSetObjectGradientColour

For use with
Data Screen Scripts

This function allows you to amend the Gradient fill colour of an Object within the Graphical Data
Screen. The Object must be currently set to ‘Gradient Fill'. The elements that make up this
function are:

Format: DataScreenSetObjectGradientColour(ObjectID, BeginColour,EndColour);

Object ID: The Identifier of the Object in the Graphical Developer

44

Ostendo Scripting Support

4.52

4.53

4.54

BeginColour: The first colour in the Gradient. See the defined colours in the
Graphical Editor. The Colour selection is the standard colour preceded with the
letters cl. For example you can enter either clAqua

EndColour: The second colour in the Gradient. See the defined colours in the
Graphical Editor.

DataScreenSetObjectHint

For use with
Data Screen Scripts

This function allows you to add or amend a Hint to an Object. A ‘Hint’ appears whenever the
cursor is passed over the object. The elements that make up this function are:

Format: DataScreenSetObjectHint(ObjectID,Hint);

Object ID: The Identifier of the Object in the Graphical Developer
Hint: The hint that will replace the current hint.

DataScreenSetObjectText

For use with
Data Screen Scripts

This function is used to populate the text in a defined Graphical Object. The format of this function
is:

Format: DataScreenSetObjectText(ObjectID,Value);

It is used in conjunction with the DataScreenOnValueEntered Procedure. In that Procedure a
variable ‘Value’ has been declared which stores the entered Value against the Questionindex
number.

This function (which is used against a specific Questionindex) takes the content of ‘Value’ and
adds it to the ‘Text’ for the defined Object ID.

The elements that make up this function are:
ObijectID: The Identifier of the Object in the Graphical Developer
Value: Takes the content of the variable ‘Value’ to populate the Object

DataScreenSetObjectTransparency

For use with
Data Screen Scripts

This function allows you to define the ‘opaqueness’ of the Object. The elements that make up this
function are:

Format: DataScreenSetObjectTransparency(ObjectID,Transparency);
Object ID: The Identifier of the Object in the Graphical Developer

Transparency: The amount of ‘opaqueness. This ranges from 0 = solid to 100 =
Invisible

Constants, Variables, Functions, Procedures 45

4.55

4.56

4.57

DataScreenSetObjectVisible

For use with
Data Screen Scripts

This function allows you to turn off or on the visibility of an Object. The elements that make up this
function are:

Format: DataScreenSetObjectVisible(ObjectID,Value);

Obiject ID: The Identifier of the Object in the Graphical Developer
Value: This can be True or False

DataScreenShow

For use with
Data Screen Scripts

This function is used to activate the Data Screen and accept entries.
The format of this function is:
Format: DataScreenShow:

If this is not included in the script then the Data Screen will not be displayed.

DBValueExists

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: DBValueExists(‘TableName','FieldName',FieldValue,CaseSensitive);

This type of question allows you to check data in the database, which returns a True/False
(Boolean) response.

The elements that make up this function are:
Table Name: The Ostendo Table Name.
Field Name: The Ostendo field Name within the above Table
Field Value: The definitive value within the field being checked
Case Sensitive: A ‘True’ or ‘False’ entry to carry out a case sensitivity check on the data

In this example we are checking that a specific Item Code exists and return a message stating
what was found

Begin
If DBValueExists('ltemmaster’,'ltemCode’,'100-2000', True) then
Showmessage('ltem Exists')
Else Showmessage('ltem Does Not Exist');
End.

46 Ostendo Scripting Support

458 DeleteFile

This procedure enables you to delete any file on your network. This can optionally be used in
combination with Procedures CopyFile, MoveFile, RenameFile and CreateDir

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script
Format: DeleteFile(FileToBeDeleted);
FileToBeDeleted: The full path of the file to be deleted
In this example we will delete file MyScript.doc
begin
DeleteFile('D:\Temp\CopyScript.doc");

Showmessage('File Deleted");
end.

459 DeleteFileFTP

For use with
General Custom Scripts

Format: DeleteFileFTP(Host, User, Password, FileName, PassiveMode{Opt Default=False},
Port{Opt Default=21});

This is used to delete a file in a remote FTP folder. Should be used with care.

Related script functions are FTPList and DownloadFileFTP.

Example:

Const

TheHost = 'ftp.test.info' ; // enter your ftp host name here
TheUser = 'testuser' ; // enter your ftp username here
Thepassword = 'testpassword' ; // enter your ftp password here
var

TheFilename : string;

begin
try

TheFileName :='public_html/testfolder/testfile.txt' ; // enter your ftp
folder/filename here

Constants, Variables, Functions, Procedures 47

4.60

DeleteFileFTP(TheHost, TheUser, ThePassword, TheFileName, False,21);
showmessage(TheFilename + ' is deleted.");

except
showmessage(exceptionmessage) ;
end;

end.

Here is another example - how to delete the contents of a FTP folder:
Const

TheHost = 'ftp.test.info' ; // enter your fip host name here
TheUser = 'testuser' ; // enter your ftp username here
Thepassword = 'testpassword' ; // enter your ftp password here

var
FileList: TStringList;
TheFolder : String ;
i: Integer;
begin
FileList := TStringList.Create;
TheFolder := 'public_html/testfolder' ; // enter your fip folder name here
try
FileList.Text := FTPList(TheHost, TheUser,ThePassword,TheFolder,True,21) ;
fori:=0 to FileList.Count-1 do
begin
if trim(FileList.Strings(i)) <> '.' then
if trim(FileList.Strings(i)) <> '..' then
DeleteFileFTP
(TheHost, TheUser,ThePassword, TheFolder+'/'+FileList.Strings(i),True,21) ;
end;
finally
FileList.Free;
end;

end.

DetailCustomLookup

For use with
Edit View Scripts

Format: Procedure DetailCustomLookup(FieldName: String);
This Procedure is used in combination with Procedure DetailCustomLookupButtonClick and allows

you to define that a field value in the Detail tab is derived from a drop-down Lookup where the
Lookup content is defined in the script.

48

Ostendo Scripting Support

4.61

In the following example we will assume that you already have created an Edit View and we are
going to create a Custom Lookup against (say) field 'Customer’

Procedure DetailCustomLookup enbles you to nominate the Detail record field against which the
lookup will appear. Add the following to the end of the Edit View Script.

Begin
DetailCustomLookup(‘Customer?);
End.

The next step is to declare the Custom Lookup under Procedure DetailCustomLookupButtonClick
as follows:

procedure DetailCustomLookupButtonClick(DisplayValue: Variant; AField: TField);
var
LookupResult: String;
begin
if AField.Fieldname = 'Customer' then
begin
LookupResult := DisplayData('Select CUSTOMER from CUSTOMERMASTER', '
Customer Lookup', 'CUSTOMERY);
if trim(LookupResult) <> " then
begin
AField.DataSet.Edit;
AField.AsString := LookupResult;
end;
end;
end;

If you go into the Edit View you will see a 'spyglass' symbol in the Customer field which, when
clicked, will bring up the Customer listing

DetailCustomLookupButtonClick

For use with
Edit View Scripts

Format: Procedure DetailCustomLookupButtonClick(DisplayValue: Variant; AField: TField);

This Procedure is used in combination with Procedure DetailCustomLookup and allows you to
define that a field value in the Detail tab is derived from a drop-down Lookup where the Lookup
content is defined in the script.

In the following example we will assume that you already have created an Edit View and we are
going to create a Custom Lookup against (say) field 'Customer’

Procedure DetailCustomLookup enbles you to nominate the Detail record field against which the
lookup will appear. Add the following to the end of the Edit View Script.

Begin
DetailCustomLookup(‘Customer?);
End.

The next step is to declare the Custom Lookup under Procedure DetailCustomLookupButtonClick
as follows:

Constants, Variables, Functions, Procedures 49

4.62

4.63

procedure DetailCustomLookupButtonClick(DisplayValue: Variant; AField: TField);
var
LookupResult: String;
begin
if AField.Fieldname = 'Customer' then
begin
LookupResult := DisplayData('Select CUSTOMER from CUSTOMERMASTER', '
Customer Lookup', 'CUSTOMERY);
if trim(LookupResult) <> " then
begin
AField.DataSet.Edit;
AField.AsString := LookupResult;
end;
end;
end;

If you go into the Edit View you will see a 'spyglass' symbol in the Customer field which, when
clicked, will bring up the Customer listing

DetailDomainCombo

For use with
Edit View Scripts

Format: DetailDomainCombo(FieldName, Domain);

This function allows you to create an entry field in the Detail record containing data that currently
exists against Ostendo’s Domains. The elements that make up this function are:
FieldName: The FieldName in the ‘Detail’ record. This should refer to the re-defined
name in the Edit View Master Query and not the database field name.
Domain: The Domain Name.

This is an example of how you would declare the Values in a ‘Detail’ screen against domain
CUSTOMER_STATUS

Begin
DetailValuesCombo(‘'Status’, CUSTOMER_STATUSY;
End.

DetailFocusedltemChanged

For use with
Edit View Scripts

Format: DetailFocusltemChanged(FocusedFieldName: String; PrevFocusedFieldName: String);
This procedure enables you to define what to do with related fields based upon the selection made
in a nominated field in the Detail record. In this example we will look at the Resource Type field
in the Resource Master Table (Asset or Employee) and that selection will dictate what drop-down
appears in the next field in the Edit View.

Procedure DetailFocusedlitemChanged(FocusedFieldName: String;
PrevFocusedFieldName: String);

begin

50

Ostendo Scripting Support

4.64

4.65

if (FocusedFieldName = 'ResourceName’) then
begin
if Detailquery.fn('ResourceType').AsString = 'Asset’ then
Begin
DetailLookup(‘ResourceName’,1053);
end;
if Detailquery.fn('ResourceType').AsString = 'Employee’ then
Begin
DetailLookup(‘ResourceName’,1052);
end;
end;
end;

This states that if the cursor is placed in field 'ResourceName' then look at the current entry in
field 'ResourceType' and show the relevant drop-down

DetailLookup

For use with
Edit View Scripts

Format: DetailLookup(FieldName, Lookup Number);

This function allows you to create an entry field whose data is populated from another table in
Ostendo using the Lookup Reference Number defined for the Table. The elements that make up
this Function are:
FieldName: The FieldName in the ‘Detail’ record. This should refer to the re-defined
name in the Edit View Master Query and not the database field name.
Lookup Number: The Lookup Numbers as defined in the Scripting Help that refers to the
relevant Tables

This is an example of how you would declare the Values in a ‘Detail’ screen against field (say)
Customer_Type

Begin
DetailLookup('Customer_Type',1028);
End.

DetailNewRecord

For use with
Edit View Scripts

Format: DetailNewRecord(DataSet: TpFIBDataSet);

This procedure enables you to prefill a field in the Detail record whenever a new record is being
added. Of course you could amend this in the record unless it has been nominated as a ‘Read
Only’ field. You should define the field in the ‘Detail’ record and the value that you wish to
pre-populate it with. For example:

procedure DetailNewRecord(DataSet: TpFIBDataSet);
begin

DataSet.FN(‘CustomerStatus').AsString := 'Active’;
end;

Constants, Variables, Functions, Procedures 51

4.66

4.67

DetailReadOnly

For use with
Edit View Scripts

Format: DetailReadOnly(FieldName,True);

This function allows you to define that a field is Read Only and cannot be amended. This is useful
(a) when a field is copied from the main Ostendo Tables and cannot be amended in the Edit View,
or (b) an Edit View has been created specifically for a User in which the data can be seen but not
amended
The elements that make up this function are:
FieldName: The FieldName in the ‘Detail’ record. This should refer to the re-defined
name in the Edit View Master Query and not the database field name.
True: If this is ‘True’ then this field cannot be amended in the Edit View. If set to ‘False’
then it can be amended.

This is an example of how you would define that the Detail field covering a Customer Address
cannot be amended

Begin
DetailRead Only(CUSTOMERADDRESS1',True);
End.

DetailValidate

For use with
Edit View Scripts

Format: DetailValidate(DisplayValue: Variant; AField: TField);

This procedure enables you to populate other Detail Fields based upon the selection made in a
nominated field

This procedure allows you to carry out actions against a ‘Detail’ Level field based upon the entry in
the nominated field. In the following example the nominated field in the 'Detail' record is linked to
a Company Asset in Ostendo. Having selected the Company Asset this procedure will populate
the Status, Description, and Type fields of the Edit View with data from the Asset Master based
upon the selection made in the ‘Name’ field

procedure DetailValidate(DisplayValue: Variant; AField: TField);
begin
if (AField.fieldname = 'Name') then

begin

Detailquery.fn(‘Status').AsString := GetSQLResult('Select ResourceStatus from
ResourceMaster where (ResourceName = "' + Afield.fieldname + ™) and (AssetType =
"Asset")");

Detailquery.fn('Description’).AsString := GetSQLResult('Select AssetDescription from
ResourceMaster where (ResourceName = " + Afield.fieldname + ™) and (AssetType =
"Asset")");

Detailquery.fn('Type").AsString := GetSQLResult('Select AssetType from
ResourceMaster where (ResourceName = " + Afield.fieldname + ™) and (AssetType =
"Asset")");

end;
end;

52 Ostendo Scripting Support
4.68 DetailValuesCombo
For use with
Edit View Scripts
Format: DetailValuesCombo(FieldName, Values, True);
This function allows you to create an entry field containing pre-defined data which is selected from
a drop-down list. The elements that make up this function are:
FieldName: The FieldName in the ‘Detail’ record. This should refer to the re-defined
name in the Edit View Master Query and not the database field name.
Values: The Values that are to appear in the drop-down list; separated by a comma
True: If ‘True’ then only the defined Values can be selected. If False then the values are
still displayed for selection but you may type in your own if required
This is an example of how you would declare the Values in a ‘Detail’ screen against field (say)
Asset_Type
Begin
DetailValuesCombo(‘Asset_Type','Plant,Vehicles,Tools', True);
End.
4.69 DirectoryExists
For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script
CustomDataScreens
DataEntryScript
Format: DirectoryExists(Directory);
This will interrogate your network to determine if the specified Direcotry exists and returns a
True/False message
Directory: The full path of the Directory being sought
In this example we will check if the Ostendo Directory exists
Var
DirectorylsThere: Boolean;
Begin
DirectorylsThere := DirectoryExists('C:\Program Files\Ostendo");
Showmessage(VarToStr(DirectorylsThere));
End.
4.70 DisplayData

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Constants, Variables, Functions, Procedures 53

4.71

Format:
DisplayData(SQL, Title, ResultField, FormHeight, FormWidth);

This allows you to create an inquiry screen to list selected records extracted via an SQL. From the
resultant list (which has additional search facilities included) you can select any record and return a
specific field value for further action

The elements that make up this function are:
SQL: A standard Query enclosed in single quotes
Title: The title that will appear in the displayed panel
Result Field: The field from a selected record that returns the value
FormHeight: Height of the displayed panel in pixels
FormWidth: Width of the displayed panel in pixels

In this example all Labour Codes are extracted and displayed, from which a specific Labour Code
is selected. This will be held against Variable ‘SelectedLabourCode’. In this example we have
included an additional line to run another function that will update the Charge Rate of that Labour
Code.

/I Define the Variable to be populated by the selected Labour Code
Var
SelectedLabourCode: String;
/I 'You can then ask the question to answer 'SelectedLabourCode’ using
Begin
SelectedLabourCode := DisplayData('Select * from LabourMaster','Labour Codes',
‘LabourCode’,500,1200);
ExecuteSQL (‘'update LabourMaster set StdSellRate = 55 where LabourCode =" +
SelectedLabourCode + ");
Showmessage('Labour Code ' + SelectedLabourCode + ' updated');
End.

DownloadFileFTP

For use with
General Custom Scripts

Format: DownloadFileFTP(Host, User, Password, SourceFileName, DestFileName,
CanOverwrite, PassiveMode{Opt Default=False}, Port{Opt Default=21});

This is used to download a file from a remote FTP folder.

Related script functions are FTPList and DeleteFileFTP.

Example:

Const

TheHost = 'ftp.test.info' ; // enter your ftp host name here
TheUser = 'testuser' ; // enter your ftp username here
Thepassword = 'testpassword' ; // enter your ftp password here

var
SourceFile, DestFile : string ;

54 Ostendo Scripting Support

begin

try
sourcefile := 'public_html/testfile.txt' ; // enter your source file path here
destfile := OstendoPath+'/testfile.txt' ; // enter your destination file path here

DownloadFileFTP
(TheHost, TheUser,Thepassword,sourceFile,destFile,true,false,21) ;

Run(destfile) ;

except
showmessage(ExceptionMessage) ;
end;

end.

4.72 EndProgress

For use with
General Custom Scripts
Screen Data Script

Format: EndProgress;

This terminates the display of the Progress Bar. This is used in combination with functions
ShowProgress and UpdateProgress (and optionally UpdateProgressCaption). The following
example uses the four available functions related to the Progress Bar

Const
ProgressCount = 2000;
Var
X: Integer;
begin
ShowProgress('My Progress Bar',ProgressCount);
For x := 1 to progressCount do
Begin
if x >= (ProgressCount / 2) then
Begin
UpdateProgressCaption('Getting There");
end;
UpdateProgress(x);
end;
EndProgress;
Showmessage (‘Progress Display Completed");
End.

4.73 ExecuteSQL

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Constants, Variables, Functions, Procedures 55

4.74

Format: ExecuteSQL(SQLStatement);
This allows you to run a Query

The elements that make up this function are:

SQL Statement: The Query, which can include Select, Update, or Delete functions

This example copies the first 30 characters of the Customer Name in the ‘Customer’ Table to the
AdditionalField_1 in the same Table

Begin

Executesql('update customermaster set ADDITIONALFIELD_1 = Substring(Customer
from 1 for 30)");

Showmessage(‘Customer Names copied");
End.

ExportData

For use with

General Custom Scripts
Screen Data Script
Order Script

Custom Product Script

Format: ExportData(SQL, ExportType);

This allows you to export data selected via a Query. The export is added to the your Documents
and Settings folder as csvfile.csv

The elements that make up this function are:

SQL Statement: The Query that would use the Select function
ExportType: ‘HTML',XLS',’XML’,;CSV’

var
TheFileName: String;
Begin

TheFileName := ExportData('select Customer,CustomerType from Customermaster’,
'CSVY);

Showmessage('Data Exported to ' + TheFileName);
End.

4.75 FileExists

For use with
System Action Script
Standard Script
Related Script
Screen Data Script
Order Script

Custom Data Script

Edit View Script

56

Ostendo Scripting Support

4.76

Format: FileExists(FileName)

This will interrogate your network to determine if the specified Directory exists and returns a
True/False message

FileName: The full path of the File being sought
In this example we will check if file Ostendo.exe exists

Var
FilelsThere: Boolean;

Begin
FilelsThere := FileExists('C:\Program Files\Ostendo\Ostendo.exe");
Showmessage(VarToStr(FilelsThere));

End.

FinishQuestions

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: FinishQuestions;

This is used to clear the current display of question, As an example, during a Custom Product
configuration you may wish to first define a 'Model Style' after which the screen is cleared and the
guestions related to that Model Style are presented.

The following example asks two questions then, upon the answer to a third question will clear the
display of not. You should note that the values against Variables answered in the first two
guestions are retained during the whole script run

/I Define the Variables
Var
FirstName: String;
LastName: String;
ClearQuestion: String;
YourAge: Integer;
/['You can then ask the questions regarding the name
Begin
FirstName := AskQuestion("What is your first name', TEXT",",");
LastName := AskQuestion('"What is your last name', TEXT",",");
ClearQuestion := AskQuestion('Do you wish to clear the previous questions', TEXT",",
'Yes,No');
If (ClearQuestion = 'Yes') then
begin
{The following function clears the Question Grid}
FinishQuestions;
end;
{Now we continue with the question}
YourAge := AskQuestion('What is your age','INTEGER',",");

Showmessage(FirstName +'' + LastName + 'you are ' + IntToStr(YourAge) + ' years of
age’);

Constants, Variables, Functions, Procedures

4.77

End.

FTPList

For use with
General Custom Scripts

Format: FTPList(Host: String; User: String; Password: String; RemoteFolder: String;

PassiveMode: boolean = False; Port: Integer = 21): Strings;

57

This is used to list all the files in a remote FTP folder. Useful when you wish to download some

files from an FTP site.
Related script functions are DownloadFileFTP and DeleteFileFTP.

Example:

Const

TheHost = 'ftp.test.info' ; // enter your ftp host name here
TheUser = 'testuser' ; // enter your ftp username here
Thepassword = 'testpassword' ; // enter your ftp password here

var
FileList : TStringList ;
TheFolder : string ;

TheFilename : string;

begin

try
FileList := TStringList.Create;
TheFolder := 'public_html/testfolder' ; // enter your ftp folder name here

try

FileList.Text := FTPList(TheHost,TheUser,ThePassword,TheFolder,false,21) ;

showmessage(FileList. Text) ;

except
showmessage(exceptionmessage) ;
end;
finally
FileList.Free ;

end;
end.

58

Ostendo Scripting Support

4.78

4.79

GetBooleanFromTable

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := GetBooleanFromTable(‘TableName','FieldName','KeyField','KeyValue');

This will access the Ostendo Database and get the Boolean Value of a field in a nominated record.
The elements that make up this function are:

Variable: The defined variable against which the result will be held.

TableName: The name of the Ostendo Table

FieldName: The Field Name within the Table containing the Boolean Value

KeyField: The Field against which you are identifying the specific record

KeyValue: The Specific record identity within the Key Field

The following example check a specific Iltem in the Item Master table to see if a Warranty record is
to be generated when it is sold. This example will use the AskQuestionWithLookup function to get
the Item Code.

/I Define the Variable to be populated by the result
Var
Selectedltem: String;
PartYesNo1l: Boolean;
/I ' You then construct the enquiry to answer ‘PartYesNol’
Begin
Selectedltem := AskQuestionWithLookup(‘ltem Code’,’Please select the Item Code’,
1004,);
PartYesNol := GetBooleanFromTable (‘ltemMaster','"WarrantyApplies','ltemCode'
,Selectedltem);
Showmessage(PartYesNo1l);
End.

GetCompanyName

This Function enables you to pull back the Company Name from the encrypted Licence.

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := GetCompanyName;
Variable: The defined variable against which the result will be held.
This example returns the Company Name from your Ostendo Licence

Var
TheName: String;

begin
TheName:= GetCompanyName;
Showmessage(TheName);

Constants, Variables, Functions, Procedures 59

end.

4.80 GetCost

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := GetCost('CodeType','Code");

This will access the Ostendo Database and get the Cost of the selected Item, Descriptor, or
Labour Code. The Cost for Items and Descriptors is related to the Cost Method defined in System
Settings

The elements that make up this function are:
Variable: The defined variable against which the result will be held.
Code Type: Descriptor, Item or Labour
Code: The actual Code of the Descriptor, Iltem or Labour

The following example will get the cost of the Item and will display it for your information

/I Define the Variable
Var
PartCostl: Double;
/I 'You can then get the cost using
Begin
PartCostl := GetCost('ltem','200-2000";
Showmessage('ltem Cost is $' + floattostr(PartCost1));
End.

4.81 GetCurrencyFormat

For use with
System Action Script
Standard Script
Related Script
Screen Data Script
Order Script

Custom Data Script

Edit View Script

Format: GetCurrencyFormat

This will interrogate the CURRENCY Table set up in Ostendo and return:
e The Currency Symbol identified against the Currency record
e The Regional Settings for Decimal and Thousands separator
e The Number of decimal places set in Ostendo's System Configuration screen

Var
CurrencyFormat: String;

60

Ostendo Scripting Support

4.82

4.83

Begin
CurrencyFormat := GetCurrencyFormat('STL");
Showmessage(CurrencyFormat);

End.

GetCustomerSellPrice

For use with
Custom Product Script

Format: Variable := GetCustomerSellPrice(‘CodeType’,’Code’);

This is used within the Custom Product area to derive a Sell Price taking into account the Price
Level and Quantity Breaks offered the Customer during Custom creation in Sales or Job Orders.
It will access the Ostendo Database and get the Sell Price of the selected Item, Descriptor, or
Labour linked to the Customer defined in the Order. The elements that make up this function are:

Variable: The defined variable against which the result will be held.

Code Type: Descriptor, Item or Labour

Code: The actual Code of the Descriptor, Iltem or Labour

The following example will get the price of the Item and display it for your information. You should
first create the Custom Product Item (Example: DOOR’) and then add the Item to a Sales Order.
The script will then be run within the Order

/I Define the Variable
Var
SellPricel: Double;
/I 'You can then get the Price using
Begin
SellPricel := GetCustomerSellPrice('ltem’,DOORY);
Showmessage('ltem Sell Price is $' + floattostr(SellPricel));
End.

GetDateFromTable

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := GetDateFromTable(‘TableName','FieldName','KeyField','KeyValue');

This will access the Ostendo Database and get the date currently held in a field in a nominated
record. The elements that make up this function are:

Variable: The defined variable against which the result will be held.

TableName: The name of the Ostendo Table

FieldName: The Field Name within the Table containing the date

KeyField: The Field against which you are identifying the specific record

KeyValue: The Specific record identity within the Key Field

This will access the Ostendo Database and get the ‘Last Cost Date’ from a specified Item record
/I Define the Variable
Var

Constants, Variables, Functions, Procedures 61

4.84

4.85

ThelLastCostDate: TDate;
/I 'You can then get the date using

Begin

ThelLastCostDate := GetDateFromTable('ItemMaster’,'Lastcostdate’,'ltemcode’,
'100-2000;

Showmessage('The Last Cost Date is ' + datetostr(TheLastCostDate));

End.

GetDoubleFromTable

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := GetDoubleFromTable('TableName','FieldName','KeyField','KeyValue');

This will access the Ostendo Database and get the numeric value including decimals of a field in a
nominated record. The elements that make up this function are:

Variable: The defined variable against which the result will be held.

TableName: The name of the Ostendo Table

FieldName: The Field Name within the Table containing the number

KeyField: The Field against which you are identifying the specific record

KeyValue: The Specific record identity within the Key Field

This example will access the Ostendo Database and get the ‘Stock on Hand’ quantity from a
specified Item record

/I Define the Variable
Var
StockOnHand: Double;
/I 'You can then get the quantity using
Begin
StockOnHand := GetDoubleFromTable('ltemMaster','OnHandQty','ltemcode’,
'100-2000%;
Showmessage('Stock on hand is ' + floattostr(StockOnHand));
End.

GetEmailAttachmentCount

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: GetEmailAttachmentCount(Msgindex);

The element that make up this function is:
Msglndex: The evaluated number of attachments to an email.

This is used in conjunction with functions ReceiveEmail and GetEmailMessage to determine the
number of attachments related to each email. Having determined the attachment count we can
then download them to a defined location.

62 Ostendo Scripting Support

This exercise includes the ReceiveEmail, GetEmailMessage and GetEmailAttachmentCount
functions to demonstrate how to download and extract email information

Const
Host = 'pop3.myemailhost.com’;
User = "YourUserName';
Password = 'yourpassword’;
Var
MessageCount,AttachmentCount,x,y: Integer;
MessageBody, MessageFrom,MessageSubject,AttachmentFileName: String;
begin
MessageCount := ReceiveEmail(Host,User,Password);
Showmessage('Number of Messages is ' + inttostr(MessageCount));
For x := 1 to MessageCount do
Begin
MessageSubject := GetEmailMessage('SUBJECT" x);
MessageFrom := GetEmailMessage('(FROMADDRESS' x);
MessageBody := GetEmailMessage('BODY",x);
Showmessage('The contents for email ' + inttostr(x) + 'is:' + #13 +
'Subject: ' + MessageSubject + #13 +
'From: ' + MessageFrom + #13 +
'‘Body: ' + MessageBody);
AttachmentCount := GetEmailAttachmentCount(x);
Fory := 1 to AttachmentCount do
Begin
AttachmentFileName := GetEmailMessage('ATTACHMENT',x,y);
Showmessage(AttachmentFileName);
end;
end;
end.

4.86 GetEmailMessage

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: GetEmailMessage(MsgPart, Msglndex, Attachindex);

This will access a specific message previously downloaded via function ReceiveEmail and extract
data from various elements that make up that email. The elements that make up this function
are:
MsgPart: The part of the email that you are extracting. The options are:
FROMNAME - Name of the Sender
SUBJECT - The content of the message Header
BODY - The content of the message body
ATTACHMENT - the Attachment (Attachment Index also required)
BODYHTML - The content of the message body in html format
FROMADDRESS - The senders address
Msglndex: Message Number derived from function ReceiveEmail
Attachindex: Attachment Index derived from function GetEmailAttachmentCount

Constants, Variables, Functions, Procedures 63

The email receipt process comprises of:

¢ ReceiveEmail; This receives the email(s) and gives each email a Message Number

¢ GetEmailMessage: This allows you to reference a specific Message Number and extract
data from that message

¢ GetEmailAttachmentCount: This counts the number of attachment to a referenced
Message Number

This exercise repeats the ReceiveEmail function and extends it so that you can extract data from
specific emails

It is suggested that you first send a couple of emails using the sendmailmessage function and
then run this routine which includes the ReceiveEmail and GetEmailAttachment functions.

Create a new Custom Script with the following. Amend the ‘Const’ values to suit your environment

Const
Host = 'pop3.myemailhost.com’;
User = "YourUserName';
Password = 'yourpassword’;
Var
MessageCount,AttachmentCount,x,y: Integer;
MessageBody, MessageFrom,MessageSubject,AttachmentFileName: String;
begin
MessageCount := ReceiveEmail(Host,User,Password);
Showmessage('Number of Messages is ' + inttostr(MessageCount));
For x := 1 to MessageCount do
Begin
MessageSubject := GetEmailMessage('SUBJECT" x);
MessageFrom := GetEmailMessage('(FROMADDRESS' x);
MessageBody := GetEmailMessage('BODY",x);
Showmessage('The contents for email ' + inttostr(x) + 'is:' + #13 +
'Subject: ' + MessageSubject + #13 +
'From: ' + MessageFrom + #13 +
'‘Body: ' + MessageBody);
AttachmentCount := GetEmailAttachmentCount(x);
Fory := 1 to AttachmentCount do
Begin
AttachmentFileName := GetEmailMessage('ATTACHMENT',x,y);
Showmessage(AttachmentFileName);
end;
end;
end.

4.87 GetFieldNames

For use with
System Action Script
Standard Script
Related Script
Screen Data Script
Order Script

Custom Data Script

64

Ostendo Scripting Support

4.88

Edit View Script

Format: GetFieldNames(TableName)
This will return a string list containing all fields in the specified Table
TableName: The Table against which the Fields are being extracted

In this example we will create a string list from the ITEMMASTER and display the result using the
Showmessage function

Var
FieldNames: String;
Begin
FieldNames := getfieldnames(ITEMMASTER");
Showmessage(FieldNames);
End.

GetFileList

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script
CustomDataScreens
DataEntryScript

Format: GetFileList(Directory,FileExtension);

This will go to the specified Directory and return a list of all the Files with the specified extension.
The files in the string are separated by a ‘Carriage Return’ and is therefore ideal for display in a
stringlist.

The elements that make up this function are
Directory: The full path of the Directory being interrogated
FileExtension: This is the file extension that you wish to be returned. You should specify
this without the dot segregator. For example, txt and not .txt. If you wish to return all
extensions then use an asterisk.

In this example we will get a list of fr3 files from the Ostendo Reports Directory.

Var
MyStringList: String;
Begin
MyStringList := GetFileList(‘C:\Program Files\Ostendo\Reports\', 'fr3");
Showmessage(MyStringList);
End.

Constants, Variables, Functions, Procedures 65

4.89

GetGenerator

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: GetGenerator(Generator);

This will access Ostendo Number Generator table and obtain the next sequential number for the

relevant Table Name. You should note that this function also increments the number in

preparation for the next number allocation. The elements that make up this function are:
Generator: The name of the record against which the number is held.

This example will go to the Job Issue Generator and get the next Job Issue Batch Number

Var

TheJoblssueNo: Integer;

/I ' You can then get the next number using

Begin

TheJoblssueNo := getgenerator('JOBISSUENQO;

showmessage('The Next Job Issue Number is ' + inttostr(TheJoblssueNo));
End.

List of Generators:

ASSEMBLYORDERNO
ASSIGNMENTID
ASSYISSUENO
ASSYRECEIPTNO
ASSYTIMESHEETNO
AUDITLOGNO
BANKINGNO
BATCHFILENO
BUYPRICECONTRACTNO
CALLTICKETID
CONNECTIONNO
COSTINGBATCHNO
CURRENCYNUMBER
CUSTOMERDEPOSITNO
CUSTOMERPAYMENTNO
GOODSDOCKETNO
INVENTORYADJUSTNO
INVENTORYBATCHNO
INVENTORYCOUNTNO
INVENTORYRESTOCKNO
INVENTORYTRANSFERNO
INVOICECONTRACTNO
ITEMCODENO

66

Ostendo Scripting Support

4.90

JOBISSUENO
JOBORDERNO
JOBTIMESHEETNO
JOURNALNO
KBARTICLEID
PRICEINQUIRYNO
PRICINGBATCHNO
PRICINGCONTRACTNO
PRICINGFILENO
PURCHASEINVOICENO
PURCHASEORDERNO
PURCHASERECEIPTNO
PURCHASESHIPMENTNO
REPORTARCHIVENO
SALESDELIVERYNO
SALESINVOICENO
SALESORDERNO
SALESPOSENDOFDAY
SALESPOSNO
SPECIALPRICINGNO
SUPPLIERCATALOGUENO
SUPPLIERCONTRACTNO
SYSUNIQUEID
TIMESHEETNO
WARRANTYID

GetintegerFromTable

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := GetintegerFromTable('TableName','FieldName’,'KeyField','KeyValue');

This will access the Ostendo Database and get the Integer Value of a field in a nominated record.
The elements that make up this function are:

Variable: The defined variable against which the result will be held.

TableName: The name of the Ostendo Table

FieldName: The Field Name within the Table containing the number

KeyField: The Field against which you are identifying the specific record

KeyValue: The Specific record identity within the Key Field

This will access the Ostendo Database and get the ‘Lead Time’ from a specified Item record

/I Define the Variable

Var

TheLeadTime: Integer;

/l You can then get the value using

Constants, Variables, Functions, Procedures 67

Begin
TheLeadTime := GetintegerFromTable('ItemMaster’,'LeadTime','ltemcode’,
'100-2000;
Showmessage('The Leadtime is ' + inttostr(TheLeadTime) + ' day");

End.

491 GetOstendoCompanies

For use with
System Action Script
Standard Script
Related Script
Screen Data Script
Order Script

Custom Data Script

Edit View Script

Format: GetOstendoCompanies

This will return a string List of all Ostendo Company Names and Database Locations currently
registered within Ostendo.

Var
Companies: String;

Begin
Companies:= GetOstendoCompanies;
Showmessage(Companies);

End.

492 GetSourceFieldValue

For use with
Order Script
Related Menu Script
Screen Data Script

Format: GetSourceFieldValue(FieldName,HEADER (or LINE));

This is used specifically against Orders (Sales, Jobs, Purchase, or Assembly). It places a Button
on the Order Line Batch Entry Bar which when selected returns the value in the field defined here

FieldName: The Name of a field in the source record
HeaderOrLine: This defines if the source is the Order HEADER or LINE.

In this exercise we will create a script that will get the current total order value and display this
whilst still in the Order Lines Screen.

To perpare and run this exercise carry out the following steps

.

Go to File>Custom Scripts and add a new Custom Script called (say) OrdPrice and ‘check’ the
This is anOrder script’ checkbox. Click on the ‘Script’ tab and add the following script
var

68 Ostendo Scripting Support

OrdAmount: String;

begin

OrdAmount := GetSourceFieldValue(ORIGINALORDERAMOUNT','HEADERY);
showmessage('The Order Amount is $' + OrdAmount);

end.

Save and exit the Custom Script screen.

The next step is to tell Ostendo that the script is linked to a Sales Order. To do this go into
File>System Configuration>Order Scripts and create a new record containing the following
Screen: Select ‘Sales Orders’ from the drop-down
Script Name: Select the above script Name
Save and exit

Now go into Sales>Sales Orders and create a Sales Order and add a couple of lines. While you
are in the Lines tab you will see a Button ‘OrdPrice’ on the Batch Entry Bar. If you click on this
button the current Order Value will be returned

493 GetSQLResult

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: GetSQLResult(SQL Statement);

This will allow you to run a Query and then populate the result in a Variable. The elements that
make up this function are:

Variable: The defined variable against which the result will be held.
SQL Statement: The Query

In this example we will access the Item Master and carry out a count of the number of records

/I Define the Variable to be populated by the selected Query result
Var
QueryResult: String;
/I 'You then specify the Query using
Begin
QueryResult := GetSQLResult('Select Count(*) from ItemMaster’);
Showmessage('There are ' + QueryResult + ' Item Records");
End.

4.94 GetStdBuyPrice

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := GetStdBuyPrice('CodeType','Code");

Constants, Variables, Functions, Procedures 69

This will access the Ostendo Database and get the Standard Buy Price of the selected Item,
Descriptor, or Labour. The elements that make up this function are:

Variable: The defined variable against which the result will be held.

Code Type: Descriptor, Item or Labour

Code: The actual Code of the Descriptor, Iltem or Labour

In this example we will access the Item Master and extract the Standard Buy Price against ltem
100-2000

/I Define the Variable
Var
PartBuyl: Double;
/I 'You can then get the Buy Price using
Begin
PartBuyl := GetStdBuyPrice('ltem’,'100-2000";
Showmessage('ltem Buy Price is $" + floattostr(PartBuy1));
End.

495 GetStdSellPrice

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := GetStdSellPrice('CodeType','Code");

This will access the Ostendo Database and get the Standard Sell Price of the selected Item,
Descriptor, or Labour. The elements that make up this function are:

Variable: The defined variable against which the result will be held.

Code Type: Descriptor, Item or Labour

Code: The actual Code of the Descriptor, Iltem or Labour

In this example we will access the Descriptor Master and extract the Standard Sell Price against
Descriptor GENERALTIME

/I Define the Variable
Var
PartSelll: Double;
/I ' You can then get the Standard Sell Price using
Begin
PartSelll := GetStdSellPrice('Descriptor',GENERALTIME);
Showmessage('Descriptors Standard Sell Price is $' + floattostr(PartSelll));
End.

496 GetStringFromTable

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := GetStringFromTable('TableName','FieldName’','"KeyField','KeyValue");

70 Ostendo Scripting Support

This will access the Ostendo Database and get the contents of a field in a nominated record. The
elements that make up this function are:

Variable: The defined variable against which the result will be held.

TableName: The name of the Ostendo Table containing the string

FieldName: The Field Name within the Table containing the string

KeyField: The Field against which you are identifying the specific record

KeyValue: The Specific record identity within the Key Field

In this example we will access the Item Master and extract the Primary Supplier against Item
5000-1010

/I Define the Variable
Var
PrimSupp: String;
/['You can then get the PrimarySupplier using
Begin
PrimSupp := GetStringFromTable(ITEMMASTER',PRIMARYSUPPLIER','ITEMCODE’,
'5000-1010%;
Showmessage('Primary Supplier is ' + PrimSupp);
End.

497 GetTableNames

For use with
System Action Script
Standard Script
Related Script
Screen Data Script
Order Script

Custom Data Script

Edit View Script

Format: GetTableNames(IncludeSystem)

This will return a string list containing all Ostendo Tables. The following example returns the String
List using a 'Showmessage' function

Var
TableNames: String;
Begin
TableNames := gettablenames;
Showmessage(TableNames);
End.

498 GetValueFromStore

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Constants, Variables, Functions, Procedures 71

4.99

4.100

This function retrieves values that have been previously stored in memory via the
SaveValueToStore function. The elements that make up this function are:

Name: The Name of the String that is currently in memory

This process will use the SaveValueToStore function to store the value in memory after which we
will use this function to retrieve and display it

Var

TheStoredValue: String;

Begin
SaveValueToStore('FirstName=Fred');
TheStoredValue:= GetValueFromStore('FirstName");
Showmessage(TheStoredValue);

End.

GetWorkflowObjectTag

For use with
General Custom Scripts linked to Workflows
Format: GetWorkflowObjectTag(ObjectID)
ObijectID: Right-Mouse on the Object in the Workflow to get the ObjectID.
This function gets the Tag Reference Number contained in the Object
This example will return the Tag Reference Number of the Object. Add an Object to a Workflow
and — in the Inspector panel - enter a numeric value in the Object’s ‘Tag’ field. Create the following
script in Ostendo and link the Object to it
Var
Tag: Integer;
begin
Tag:= GetWorkflowObjectTag(4);
Showmessage('Objects Tag Reference is ' + IntToStr(Tag));
end.

If you now click on the Object in the Workflow it will return the Object’'s Tag reference.

GetWorkflowObjectText

For use with
General Custom Scripts linked to Workflows

Format: GetWorkflowObjectText(ObjectID)
ObjectID: Right-Mouse on the Object in the Workflow to get the ObjectID.
This function gets the Text held against the Object

This example will return the Text currently in an Object. Add a Text Object to a Workflow and
amend the Text as required. Create the following script in Ostendo and link the Object to it

72

Ostendo Scripting Support

4.101

Var
TheText: String;
begin
TheText:= GetWorkflowObjectText(4);
Showmessage('Objects Text is ' + TheText);
end.

If you now click on the Object in the Workflow it will return the Text contained in the Object.

InsertAssembly

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertAssembly(OrderNumber, OrderDate, RequiredDate, ItemCode, Qty,
SourceType, SourceReference, SourcelD, SourceName, CreateDefaultStep);

This will create an AssemblyHeader record. The elements that make up this function are:
OrderNumber: The Assembly Order Number. Note: If Order Numbering is automatic
(Assembly Rules) then this should be left blank.

Order Date: The date the Order was raised. You can enter the word ‘date’ to denote the
system date or specify strtodate(‘01/07/2008’) to convert an entered date (Format
dd/mml/yyyy) into a date field

RequiredDate: The date the Order is required. You can enter the word date to denote the
system date or specify strtodate(‘01/07/2008’) to convert an entered date (Format
dd/mml/yyyy) into a date field

[temCode: The parent Item for the Assembly Order. You should note that upon
generation of the Assembly Order Ostendo will check to see if a BOM exists for this Item
and, if so, add the components and routing from the BOM.

Qty: The quantity being ordered

Source Type: The source of the order (Example: Manual, Sales, Jobs)

Source Reference: The number of the Source Order. This can be blank for Manual
Source Type

SourcelD: Other source such as Drawing Number. Can be left blank

SourceName: Other source Name. Can be left blank

CreateDefaultStep: Set to True if you wish to add the default Assembly step to the
Assembly Order. If set to False then you should also run function InsertAssemblyStep to
add the relevant steps.

In this example we will create an order for 1105-2184.

Begin
InsertAssembly(",date, strtodate('01/07/2008'"),'1105-2184',1,'Manual',",0, To
Stock',False);
Showmessage('Assembly Order Created');

End.

You should note that, in addition to creating the Assembly Order, you can also return the Order
Number itself to a variable. This variable can then be used in other parts of the whole script. For
example the above script can be extended as follows

Var
TheOrderNumber: String;

Constants, Variables, Functions, Procedures 73

Begin

TheOrderNumber := InsertAssembly(",date, strtodate('01/07/2008"),'1105-2184",1;'
Manual',",0,'To Stock',False);

Showmessage('The Assembly Order created is ' + TheOrderNumber);
End.

4.102 InsertAssemblyLine

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertAssemblyLine(OrderNumber, Qty, LineNumber, CodeType, LineCode,
Description, StepName, LineUnit, PositionReference, RunorSetup, LineNotes);

This will create an Assembly Line record against an Assembly Order Header that has been
previously generated. The elements that make up this function are:
OrderNumber: The Assembly Order Number.that must already exist
Qty: The quantity of the line that is being added
LineNumber: The Assembly Order Line Number.to be given to this line
CodeType: The type of line being added. The options are Item Code, Descriptor Code, or
Labour Code.
LineCode: The identity of the line being added.
Description: Description of the line being added.
StepName: The Step Name that this line is being added to. The Step must already exist
against the Assembly Order.
LineUnit: The Unit of Measure for the Line. This must be a valid Unit of Measure
currently held against the LineCode
PositionReference: The position Reference (Example: Location on Drawing that the
component appears in this order. Can be left blank.
RunOrSetup: Must have either Run or Setup as an entry
LineNotes: Any required notes. Can be left blank

In this example we will add a line to an existing order. Therefore you should first create the Order
Header and add any Steps. The Lines can then be added using the following function (Replace
WO0200027 with the Order Header Number)

Begin
InsertAssemblyLine("'W0200027',3,60,'Item Code','100-2000','Washer-Mild
Steel-8mm’',’Assembly’,'Each’,",'Run',");
Showmessage('Assembly Line Added");

End.

You should note that you can add the Assembly Order Line at the same time as you create the
Assembly Order Header by using a declared variable. For example we will combine the
InsertAssembly and InsertAssemblyLine scripts as follows

Var

TheOrderNumber: String;
Begin

TheOrderNumber := InsertAssembly(",date, strtodate('01/07/2008'"),'1105-2184",1;'
Manual',",0,'To Stock',False);

InsertAssemblyLine(TheOrderNumber,3,60,'Item Code','100-2000','Washer-Mild
Steel-8mm’','Assembly’,'Each’,",'Run',");

74

Ostendo Scripting Support

Showmessage('The Assembly Order and Line created is ' + TheOrderNumber);
End.

4.103 InsertAssemblyOutput

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertAssemblyOutput(OrderNumber, OutputStyle, OutputCode,
OutputDescription, OutputQty, OutputUnit, OutputCostPercent, OutputRecQty, ScrapQty);

When an Assembly Order is created the main Output Item is automatically included. This function
will create additional output records covering Co-Products and Bi-Products. The elements that
make up this function are:

OrderNumber: The Assembly Order Number.that must already exist

Output Style: This must be either CoProduct or BiProduct

OutputCode: Must be a valid Item Code

OutputDescription: Description of the Co-Product or Bi-Product.

OutputQty: The quantity of the line in the Assembly Order

OutputUnit: The base unit of the OutputCode

OutputCostPercentage: The percentage of the component costs that this Co-Product or

Bi-Product will consume

OutputRecQty: The quantity already received against this line

ScrapQty: The quantity already scrapped against this line

In this example we will add a Co-Product to an existing order. Therefore you should first create
the Order Header. The Co-Product can then be added using the following function. You should
replace WO200027 with the actual Order Header Number)

Begin
InsertAssemblyOutput("'W0200027','CoProduct’,'200-2000','Washer-Mild
Steel-8mm',2,'Each’,40,0,0);
Showmessage('Co-Product Line Added");

End.

You should note that you can add the Co-Product or Bi-Product at the same time as you create the
Assembly Order Header by using a declared variable. In this example we will combine the
InsertAssembly and InsertAssemblyOutput scripts as follows

Var
TheOrderNumber: String;
Begin
TheOrderNumber := InsertAssembly(",date, strtodate('01/07/2008'),'1105-2184",1;'
Manual',",0,'To Stock',False);
InsertAssemblyOutput('W0O200027','CoProduct','100-2000','Washer-Mild Steel-8mm',2;'
Each',40,0,0);
Showmessage('Assembly Order and Co-Product Line Added");
End.

Constants, Variables, Functions, Procedures 75

4.104

4.105

InsertAssemblyStep

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertAssemblyStep(OrderNumber, StepName, StepSeq, Steplnstructions);

This will create an Assembly Step record. The elements that make up this function are:
OrderNumber: The Assembly Order Number.
StepName: The name of the Step. This MUST already exist in
Assembly>Settings>StepNames
StepSequence: Any Integer
Instructions: Extended Instruction on the Step Process

In this example we will add a step to an existing Assembly Order. You should replace WO200027
with the actual order number.

Begin
InsertAssemblyStep('W0200027','QA",20,");
Showmessage('Assembly Step Added");
End.

You should note that you can add the Step at the same time as you create the Assembly Order
Header by using a declared variable. In this example we will combine the InsertAssembly and
InsertStep scripts as follows

Var
TheOrderNumber: String;
Begin
TheOrderNumber := InsertAssembly(",date, strtodate('01/07/2008'"),'1105-2184',1,'
Manual',",0,'To Stock',False);
InsertAssemblyStep(TheOrderNumber,'QA',20,");
Showmessage('Assembly Order and additional Step Added");
End.

InsertBOMHeader

For use with
Custom Product Script

This function can only be used in a Script created via Assembly>Custom Products. It uses the
linked Item Code as the prime key when creating the BOM Header for that configuration

Format: InsertBOMHeader('Description’);
This is required to define that a BOM is being created. The elements that make up this function
are:

Description: A description of the created BOM (max 50 chars). Blank if not specified

Example:
InsertBOMHeader('The BOM Header for this configuration’);

76

Ostendo Scripting Support

4.106 InsertBOMLine

4.107

4.108

For use with
Custom Product Script

This function can only be used in a Script created via Assembly>Custom Products. It uses the
linked Item Code as the prime key when adding a BOM Line to that configuration

Format:
InsertBOMLine('StepName','CodeType','LineCode’,LineQty,LineNumber,ScrapPercent,'RunOrSetu
p','PosReference”, 'Linelnstructions’);

This will add a Line to a step in the Bill of Material. The elements that make up this function are:
StepName: The Step Name - The step should be created as defined above
CodeType: Must be Descriptor, Item or Labour
LineCode: The name of the Descriptor, Item or Labour (max 50 chars)
LineQty: The quantity required against this line
LineNumber: Any Integer to define a Line number
ScrapPercent: Any Number (incl decimals). Zero if it does not apply
RunOrSetup: Enter either Run or Setup
PosReference: Enter a position reference if applicable
Linelnstructions: Unlimited amount of text to add Instructions

Example: InsertBOMLine('Cut','ltem',)RIMUPANEL1600X600',1,10,0,'Run',",");

InsertBOMProperty

For use with
Custom Product Script

This function can only be used in a Script created via Assembly>Custom Products. It uses the
linked Item Code as the prime key when creating a BOM Property for that configuration

Format: InsertBOMProperty('PropertyName','PropertyValue’);
If you wish to add Properties to the BOM then use this function. The elements that make up this
function are:

PropertyName: The name of the Property (max 20 chars)

PropertyValue: The value being applied to the Property Name (max 50 chars)

Example:
InsertBOMProperty(‘'Length',inttostr(DeskLength));

Note: The instruction inttostr(DeskLength converts a numeric variable to a string format

InsertBOMResource

For use with
Custom Product Script

This function can only be used in a Script created via Assembly>Custom Products. It uses the
linked Item Code as the prime key when adding a BOM Resource for that configuration

Format: InsertBOMResource('StepName','ResourceType','ResourceName’);

Constants, Variables, Functions, Procedures 77

4.109

4.110

This will add a Resource to a process Step. The elements that make up this function are:
StepName: The Step Name - The step should be created as defined above
ResourceType: Must be either ‘ASSET’ or ‘EMPLOYEE’

ResourceName: The name of the Asset or Employee (max 30 chars)

Example:
InsertBOMResource('Cut’,'Employee’,'John’);

InsertBOMStep

For use with
Custom Product Script

This function can only be used in a Script created via Assembly>Custom Products. It uses the
linked Item Code as the prime key when creating a BOM Step for that configuration

Format: InsertBOMStep('StepName',StepSequence,'StepDescription’,'Steplnstructions’);

This will create a Bill of Material Step. The elements that make up this function are:
StepName: The name that you are applying to the Step (max 20 chars)
StepSequence: A number defining the sequence in which the Step will be carried out
StepDescription: A brief description of the Step (max 50 chars)

Steplinstructions: Unlimited Text defining what happens in this Step

Example:
InsertBOMStep('Cut',10,'Cut and Trim all Timber','Check the measurements");

InsertJob

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertJob(OrderNo, OrderDate, RequiredDate, JobType, Customer, Description,
OrderNotes, CustomerPO, CustomerAsset, UseTemplate, Template, EstimatedDuration,
DurationScale, ProjectName);

This will create a Job Header record. The elements that make up this function are:
OrderNumber: The Job Order Number. Note: If the Job Type’'s Order Numbering is
automatic then this should be left blank.

Order Date: The date the Order was raised. You can enter the word ‘date’ to denote the
system date or specify strtodate(‘01/07/2008’) to convert an entered date (Format
dd/mm/yyyy) into a date field

RequiredDate: The date the Order is required. You can enter the word ‘date’ to denote
the system date or specify strtodate(‘01/07/2008’) to convert an entered date (Format
dd/mm/yyyy) into a date field

JobType: The Job Type as defined in Jobs>Settings>Job Types.

Customer: The Order Customer

Description: Description of the Order. Can be blank.

Order Notes: Extended Notes against the Order. Can be blank

Customer PO: The Customer’s Purchase Order. This must have an entry if the Customer
's Master record is flagged as ‘Purchase Order Mandatory’

CustomerAsset: The Identity of the Customer Asset is the Job Style of the Order Type is

78 Ostendo Scripting Support

defined as ‘Customer Asset’

UseTemplate: Set to True if you wish to create the Job Order using a Job Template..
Template: If the previous parameter is ‘True’ then a valid Template should be entered
here

EstimatedDuration: The estimated duration that the Job will take. Can be zero
DurationScale: The scale of the duration. The options are ‘Minutes’ or ‘Hours’,
ProjectName: If the Job Order is linked to a Project then enter the Project ID here

In this example we will create a Job Order for Customer ‘Jim Gold & Co Ltd’

Begin
InsertJob(",date, strtodate('01/07/2008"),'Progress','Jim Gold & Co Ltd','Phone
Order',",",",False,",0,'Hours");
Showmessage('Job Order Created";

End.

You should note that, in addition to creating the Job Order Header, you can also return the Job
Order Number itself to a variable. This variable can then be used in other parts of the whole script.
For example the above script can be extended as follows

Var
TheJobOrderNumber: String;
Begin
TheJobOrderNumber := InsertJob(",date, strtodate('01/07/2008"),'Progress','Jim Gold &
Co Ltd','Phone Order',",",",False,",0,'Hours");
Showmessage('The Job Order created is ' + TheJobOrderNumber);
End.

4.111 InsertJobOrderLine

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertJobOrderLine(OrderNumber, CodeType, LineCode, LineQty, OverridePrice,
UnitPrice);

This will create a Job Order Line record against a Job Order Header that has been previously
generated. The elements that make up this function are:
OrderNumber: The Job Order Number.that must already exist
CodeType: The type of line being added. The options are Item Code, Descriptor Code,
Labour Code, Kitset Code, or Catalogue Code.
LineCode: The identity of the line being added.
LineQty: The Order quantity of the line being added
OverridePrice: Enter ‘True’ if the next field has an override Price. Enter ‘False’ if you are
using the Base Price
UnitPrice: If the previous field is ‘True’ then enter the override Price

In this example we will add a line to an existing order. Therefore you should first ensure that a Job
Order Header exists (This should replace PRO400010 - below - with the actual Job Order
number). The Lines can then be added using the following function

Begin
InsertJobOrderLine('PRO400005','Item Code','100-2000',3,False,0);

Constants, Variables, Functions, Procedures 79

4.112

4.113

Showmessage('Job Line Added);
End.

You should note that you can add a Job Order Line at the same time as you create the Job Order
Header by using a declared variable. For example we will combine the InsertJob and
InsertJobOrderLine scripts as follows

Var
TheJobOrderNumber: String;
Begin
TheJobOrderNumber := InsertJob(",date, strtodate('01/07/2008"),'Progress','Jim Gold &
Co Ltd','Phone Order',",",",False,",0,'Hours");
InsertJobOrderLine(TheJobOrderNumber,'ltem Code','100-2000',3,False,0);
Showmessage('Job Order and Line Added");
End.

InsertOrderLine

For use with
Custom Product Script

This function can only be used in a Script created via Assembly>Custom Products. It uses the
linked Item Code as the prime key when creating an additional Sales Or Job Order Line for the
configuration

Format: InsertOrderLine('CodeType','LineCode’,LineQty,UnitPrice);

This function allows you to add new lines to the originating Sales or Job Order. This emulates an *
Add-On Sale’ type function such as you also supply a ‘Chair’ when you configure a Desk. The
elements that make up this function are:

CodeType: Must be Descriptor, Item or Labour

LineCode: The name of the Descriptor, Item or Labour (max 50 chars)

LineQty: The quantity required against this line (incl Decimals)

UnitPrice: The Unit Sell Price for this Line (incl Decimals)

Example:
InsertSOLine('ltem','OFFICECHAIR',1,135);

InsertPurchaseOrder

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertPurchaseOrder(OrderNo, OrderType, OrderDate, RequiredDate, Supplier,
Description, OrderNotes);

This will create a Purchase Order Header record. The elements that make up this function are:
OrderNumber: The Purchase Order Number. Note: If the Purchase Type’s Order
Numbering is automatic then this should be left blank.

OrderType: The Purchase Order Type as defined in Purchasing>Settings>Purchase
Types.
Order Date: The date the Order was raised. You can enter the word ‘date’ to denote the

80

Ostendo Scripting Support

4.114

system date or specify strtodate(‘01/07/2008’) to convert an entered date (Format
dd/mml/yyyy) into a date field

RequiredDate: The date the Order is required. You can enter the word ‘date’ to denote
the system date or specify strtodate(‘01/07/2008’) to convert an entered date (Format
dd/mml/yyyy) into a date field

Supplier: The Order Supplier

Description: Description of the Order. Can be blank.

Order Notes: Extended Notes against the Order. Can be blank

In this example we will create a Purchase Order against Supplier ‘Bruce Wilson’
Begin
InsertPurchaseOrder(",'Standard',date,strtodate('01/07/2008"),'Bruce
Wilson','Urgent Order',");
Showmessage('Purchase Order Created');
End.

You should note that, in addition to creating the Purchase Order Header, you can also return the
Purchase Order Number itself to a variable. This variable can then be used in other parts of the
whole script. For example the above script can be extended as follows

Var
ThePONumber: String;
Begin
ThePONumber := InsertPurchaseOrder(",'Standard’,date,strtodate('01/07/2008"),"
Bruce Wilson','Urgent Order',");
Showmessage('The Purch Order created is ' + ThePONumber);
End.

InsertPurchaseOrderLine

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertPurchaseOrderLine(OrderNumber, CodeType, LineCode, LineQty,
OverridePrice, UnitPrice);

This will create a Purchase Order Line record against a Purchase Order Header that has been
previously generated. The elements that make up this function are:
OrderNumber: The Purchase Order Number.that must already exist
CodeType: The type of line being added. The options are Item Code, Descriptor Code, or
Catalogue Code.
LineCode: The identity of the line being added.
LineQty: The order quantity of the line being added
OverridePrice: Enter ‘True’ if the next field has an override Price. Enter ‘False’ if you are
using the Base Price
UnitPrice: If the previous field is ‘True’ then enter the override Price

In this example we will add a line to an existing order. Therefore you should first ensure that a
Purchase Order Header exists. Replace PO100016 with the actual Purchase Order Number.
The Lines can then be added using the following function

Begin
InsertPurchaseOrderLine('PO100017','Item Code','100-2000',3,False,0);

Constants, Variables, Functions, Procedures 81

Showmessage('Purchase Line Added");
End.

You should note that you can add a Purchase order Line at the same time as you create the
Purchase Order Header by using a declared variable. For example we will combine the
InsertPurchaseOrder and InsertPurchaseOrderLine scripts as follows

Var
ThePONumber: String;
Begin
ThePONumber := InsertPurchaseOrder(",'Standard’,date,strtodate('01/07/2008"),'
Bruce Wilson','Urgent Order",");

InsertPurchaseOrderLine(ThePONumber,'ltem Code','100-2000',3,False,0);

Showmessage('Purchase Order and Line Added");
End.

4.115 InsertRecord

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertRecord(TableName, Mappings, MultiLineValues);

This will create one or more lines in any table in Ostendo. The elements that make up this function
are:
TableName: The table into which the record is being inserted
Mappings:: You should identify the mappings of what is to be inserted. This can be in
one of two formats dependent upon what is specified in the next parameter.
If the next parameter is ‘False’ (or not specified) then the mappings are in the form of a

string value using #13 after each field. (The function recognises #13 as a ‘Carriage
Return’)

For example Fieldl + #13 + Field2 + #13 + Field3

If the next parameter is ‘True’ then the mappings are in the form of a list
For example Fieldl

Field2
Field3

MultiLineValues:: If False or Blank then the supplied data is in the form of a string value.
If True then the supplied data is in a list where each field is on a new line.

In this example we will add a Scrap Code to the Assembly Scrap Code Table

Begin
InsertRecord('ScrapCodes',
'ScrapCode=Broken' + #13 +
'ScrapDescription=Item Broken' + #13 +
'CostCentre=");

Showmessage('Scrap Code Added’);
End.

82

Ostendo Scripting Support

4.116 InsertSalesOrder

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertSalesOrder(OrderNo, OrderType, OrderDate, RequiredDate, Customer,
Description, PurchaseOrder, OrderNotes);

This will create a Sales Order Header record. The elements that make up this function are:
OrderNumber: The Sales Order Number. Note: If the Sales Type’'s Order Numbering is
automatic then this should be left blank.

OrderType: The Sales Type as defined in Sales>Settings>Sales Types.

Order Date: The date the Order was raised. You can enter the word ‘date’ to denote the
system date or specify strtodate(‘01/07/2008’) to convert an entered date (Format
dd/mm/yyyy) into a date field

RequiredDate: The date the Order is required. You can enter the word ‘date’ to denote
the system date or specify strtodate(‘01/07/2008’) to convert an entered date (Format
dd/mm/yyyy) into a date field

Customer: The Order Customer

Description: Description of the Order. Can be blank.

PurchaseOrder: The Customer’s Purchase Order. This must have an entry if the
Customer’s Master record is flagged as ‘Purchase Order Mandatory’

OrderNotes: Extended Notes against the Sales Order Header. This can be blank

In this example we will create a Sales Order for Customer ‘Jim Gold & Co Ltd’

Begin
InsertSalesOrder(",'CounterSales',date, strtodate('01/07/2008"),'Jim Gold & Co
Ltd','Fax Order',",");
Showmessage('Sales Order Created');

End.

You should note that, in addition to creating the Sales Order Header, you can also return the Sales
Order Number itself to a variable. This variable can then be used in other parts of the script. For
example the above script can be extended as follows

Var
TheSONumber: String;
Begin
TheSONumber := InsertSalesOrder(",'CounterSales',date, strtodate('01/07/2008"),'Jim
Gold & Co Ltd','Fax Order",",");
Showmessage('The Sales Order created is ' + TheSONumber);
End.

4.117 InsertSalesOrderLine

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertSalesOrderLine(OrderNumber, CodeType, LineCode, LineQty, OverridePrice,

Constants, Variables, Functions, Procedures 83

4.118

UnitPrice, Description, CatalogueName, LineNumber, LineNotes, RequiredDate);

This will create a Sales Order Line record against a Sales Order Header that has been previously

generated. The elements that make up this function are:
OrderNumber: The Sales Order Number, which must already exist
CodeType: The type of line being added. The options are Item Code, Descriptor Code,
Kitset Code, or Catalogue Code.
LineCode: The identity of the line being added.
LineQty: The Order quantity of the line being added
OverridePrice: Enter ‘True’ if the next field has an override Price. Enter ‘False’ if you are
using the Base Price
UnitPrice: If the previous field is ‘True’ then enter the override Price
Description: If you are overriding the Description then enter this here. If this is left blank
then the Description will be copied from the Item Code, Descriptor Code, Kitset Code, or
Catalogue Code.
CatalogueName: If this Item is a Code Type 'Catalogue Code' then enter the Catalogue
Name here
LineNumber: Enter the Line Number of the Inserted Line. If nothing is entered then
Ostendo will automatically allocate a Line Number
Line Notes: Enter any Notes that you are including with this Item
RequiredDate: Enter the Required Date for the Line. If this is not entered then today's
date will be used

In this example we will add a line to an existing order. Therefore you should first ensure that a
Sales Order Header exists. In the example below replace SO300019 with the actual Sales order
Number. The Lines can then be added using the following function

Begin
InsertSalesOrderLine('SO300018','ltem Code','100-2000',10,False,0,",",",",");
Showmessage('Sales Order Line Added;

End.

You should note that you can add a Sales Order Line at the same time as you create the Sales
Order Header by using a declared variable. For example we will combine the InsertSalesOrder and
InsertSalesOrderLine scripts as follows

Var

TheSONumber: String;
Begin

TheSONumber := InsertSalesOrder(",'CounterSales',date, strtodate('01/07/2008"),'Jim
Gold & Co Ltd','Fax Order",",");

InsertSalesOrderLine(TheSONumber,'ltem Code','100-2000',10,False,0,",",",",");
Showmessage('Sales Order and Line Added");

End.

InsertTimeSheetHeader

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertTimesheetHeader(Status, Reference, EntryStyle, EntrySelection,
UseTimeOfDay, TimesheetDate, ApprovalStatus, ApprovalDate, ApprovalUserName,

84

Ostendo Scripting Support

TimesheetNotes, TimesheetBatchDate);

This will create a Timesheet Header record. The elements that make up this function are:
Status: The status of the Timesheet. This would normally be ‘InProgress’ however the
status could be ‘Updated’ if you are adding Timesheet history
Reference: Reference text against the Timesheet. This can be blank
EntryStyle: The entry style which can be one of Employee, Job, Assembly, Non-Charge,
or Any
EntrySelection: Mandatory entry that must be related to the Entry Style chosen in the
previous field
UseTimeOfDay: If ‘True’ then any Timesheet Lines will have a start and finish time. If
False then the lines will have duration only
TimesheetDate: The date the Timesheet was raised. You can enter the word ‘date’ to
denote the system date or specify strtodate(‘01/07/2008’) to convert an entered date
(Format dd/mm/yyyy) into a date field
ApprovalStatus: If ‘Timesheet Approvals’ under Labour Settings is checked then this
must have an entry. The entry options are ‘Waiting Approval’, ‘Approved’, or ‘Approval
OnHold'.

ApprovalDate: If the status is ‘Approved’ then this must contain a date. This can be the
word ‘date’ to denote the system date or you can specify strtodate(‘01/07/2008’) to convert
an entered date (Format dd/mm/yyyy) into a date field

ApprovalUserName: The Name of a User who has ‘Approvals’ authority
TimesheetNotes: Additional Notes that can apply to the Timesheet. This can be blank
TimesheetBatchDate: The date of the Timesheet Batch. You can enter the word ‘date’ to
denote the system date or specify strtodate(‘01/07/2008’) to convert an entered date
(Format dd/mm/yyyy) into a date field

In this example we will create a Timesheet for Bob Drum

Begin
InsertTimesheetHeader('InProgress',",'Employee’,'Bob Drum',False,date,’
Approved',date,’Admin’,",date);
Showmessage('Timesheet Header Created");

End.

You should note that, in addition to creating the Timesheet Header, you can also return the
Timesheet Batch Number to a variable. This variable can then be used in other parts of the script.
For example the above script can be extended as follows

Var
TheBatchNumber: Integer;
Begin
TheBatchNumber := InsertTimesheetHeader('InProgress',",'Employee’,'Bob Drum'
,False,date,'Approved',date,'Admin’,",date);
Showmessage(TheBatchNumber);
End.

4.119 InsertTimeSheetLine

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: InsertTimesheetLine(BatchNo, DateWorked, OrderType, ReferenceNumber,

Constants, Variables, Functions, Procedures 85

Employee, EmployeeRateScale, TaskorStepName, LabourCode, DayStartTime,
DayEndTime, Hoursworked, ChargeStyle, NonChargeCode, RecordedNotes,
CopyToHistory, CopyToLines, CopyTolnvLine, LineStatus);

This will create a Timesheet Line record. The elements that make up this function are:
BatchNo: The Timesheet Batch Number held against the Timesheet Header record.
DateWorked: The date the work was carried out. You can enter the word ‘date’ to denote
the system date or specify strtodate(‘01/07/2008’) to convert an entered date (Format
dd/mml/yyyy) into a date field
OrderType: The type order against which the work was carried out. The options are Job,
Assembly, or Non-Charge
ReferenceNumber: the Reference number within the Order Type entered in the previous
field. This must exist in Ostendo
Employee: The Employee Name
EmployeeRateScale: Mandatory entry that must be related to a Rate Scale maintained
under Labour>Settings
TaskOrStepName: A valid Task if booking against a Job or Step Name if booking against
an Assembly Order. Not required for Non-Charge
LabourCode: A valid Labour Code is required
DayStartTime: If the ‘UseTimeOfDay’ in the Timesheet Batch header is True then this
must have an entry to the format HH:MM
DayEndTime: If the ‘UseTimeOfDay’ in the Timesheet Batch header is True then this
must have an entry to the format HH:MM
HoursWorked: If ‘Timesheet Approvals’ under Labour Settings is not checked then this
must have an entry. The entry is in the form of HH.DD
ChargeStyle: Enter the Charge Style. The options are Chargeable, Warranty, Contract,
or Non-Charge
Non-Charge Code: If the Charge Style is not Chargeable then this must have an entry
that relates to the Style being booked against
RecordedNotes: Additional Notes that can apply to the Timesheet Line. This can be
blank
CopyToHistory: Can be True or False as required
CopyToLines: Can be True or False as required
CopyTolnvLine: Can be True or False as required
LineStatus: Can be InProgress or Updated

In this example we will add a Timesheet Line to a previously created Timesheet Header. In this
example replace the first number (4) with the timesheet Batch Number

Begin
InsertTimesheetLine(4,date,'Job’,'JOB400008','Bob
Drum','STD','Job','LAB-ASSEMBLY",0,0,5,'Chargeable',",",False,False,False,’
InProgress');
Showmessage('Timesheet Line Added");

End.

You should note that you can add a line to the Timesheet at the same time as you create the
Timesheet Batch by using a declared variable. For example we will combine the
InsertTimesheetHeader and InsertTimesheetLine scripts as follows

Var
TheBatchNumber: Integer;
Begin
TheBatchNumber := InsertTimesheetHeader('InProgress',",'Employee’,'Bob Drum'

,False,date,'Approved',date,'Admin’,",date);

86

Ostendo Scripting Support

4.120

4.121

InsertTimesheetLine(TheBatchNumber,date,'Job’,' JOB400008','Bob
Drum','STD','Job','LAB-ASSEMBLY",0,0,5,'Chargeable',",",False,False,False,'InProgress");
Showmessage('Timesheet Header and Line Added");

End.

LineQty

For use with
Custom Product Script

Format: LineQty;

This Custom Product Script variable allows you to evaluate the Line quantity and attach it to this
pre-defined Variable. The value in this Variable will automatically populate the Quantity in the
generated Custom Product Line. If this Variable is not used then a value of 1 is assumed.

Example:
Var
ReqdQty, ScrapQty: Double;
Begin
LineQty := (ReqdQty * ScrapQty);
End.

LinesCustomLookup

For use with
Edit View Scripts

Format: Procedure LinesCustomLookup(FieldName: String);

This Procedure is used in combination with Procedure LinesCustomLookupButtonClick and allows
you to define that a field value is derived from a drop-down Lookup where the Lookup content is
defined in the script.

In the following example we will assume that you already have created an Edit View and we are
going to create a Custom Lookup against (say) field 'ltem_Code'

Procedure LinesCustomLookup enables you to nominate the Lines record field against which the
lookup will appear. Add the following to the end of the Edit View Script.

Begin
LinesCustomLookup('ltem_Code");
End.

The next step is to declare the Custom Lookup under Procedure LinesCustomLookupButtonClick
as follows:

procedure LinesCustomLookupButtonClick(DisplayValue: Variant; AField: TField);
var

LookupResult: String;
begin

if AField.Fieldname = 'ltem_Code' then

begin

LookupResult := DisplayData('Select ITEMCODE from ITEMMASTER', 'ltem Lookup', '
ITEMCODEY);

Constants, Variables, Functions, Procedures 87

if trim(LookupResult) <> " then
begin
AField.DataSet.Edit;
AField.AsString := LookupResult;
end;
end;
end;

If you go into the Edit View you will see a 'spyglass' symbol in the Item_Code field which, when
clicked, will bring up the Item listing

4.122 LinesCustomLookupButtonClick

For use with
Edit View Scripts

Format: Procedure LinesCustomLookupButtonClick(DisplayValue: Variant; AField: TField);
This Procedure is used in combination with Procedure LinesCustomLookup and allows you to
define that a field value in the Lines Tab is derived from a drop-down Lookup where the Lookup
content is defined in the script.

In the following example we will assume that you already have created an Edit View and we are
going to create a Custom Lookup against (say) field 'ltem_Code'

Procedure LinesCustomLookup enbles you to nominate the Lines record field against which the
lookup will appear. Add the following to the end of the Edit View Script.

Begin
LinesCustomLookup('ltem_Code");
End.

The next step is to declare the Custom Lookup under Procedure LinesCustomLookupButtonClick
as follows:

procedure LinesCustomLookupButtonClick(DisplayValue: Variant; AField: TField);

var

LookupResult: String;
begin

if AField.Fieldname = 'ltem_Code' then

begin

LookupResult ;= DisplayData('Select ITEMCODE from ITEMMASTER', 'ltem Lookup', '

ITEMCODE);

if trim(LookupResult) <> " then

begin

AField.DataSet.Edit;
AField.AsString := LookupResult;
end;
end;
end;

If you go into the Edit View you will see a 'spyglass' symbol in the Item_Code field which, when
clicked, will bring up the Item listing

88 Ostendo Scripting Support
4.123 LinesDomainCombo
For use with
Edit View Scripts
Format: LinesDomainCombo(FieldName, Domain);
This function allows you to create an entry field in the Lines record containing data that currently
exists against Ostendo’s Domains. The elements that make up this function are:
FieldName: The FieldName in the ‘Lines’ record. This should refer to the re-defined name
in the Edit View Master Query and not the database field name.
Domain: The Domain Name.
This is an example of how you would declare the Values in a ‘Lines’ screen against domain
ITEM_STATUS
Begin
DetailValuesCombo('ltemStatus','ITEM_STATUSY);
End.
4.124 LinesFocusedltemChanged

For use with
Edit View Scripts

Format: LinesFocusltemChanged(FocusedFieldName: String; PrevFocusedFieldName: String);

This procedure enables you to define what to do with related fields based upon the selection made
in a nominated field in the Lines record. In this example we will define (for example) that a field in
the Edit View Lines record called LOANEDTOTYPE contains values of Employee, Customer,
Supplier and that the drop-down against the associated field LOANEDTONAME relates to the
selection made

Procedure LinesFocusedltemChanged(FocusedFieldName: String;
PrevFocusedFieldName: String);

begin
if (FocusedFieldName = ‘Loaned_To_Name’) then
begin
if linesquery.fn('Loaned_To_Type').AsString = 'Employee' then
Begin
LinesLookup(‘Loaned_To_Name’,1040);
end;
if linesquery.fn('Loaned_To_Type'").AsString = 'Customer’ then
Begin
LinesLookup(‘Loaned_To_Name’,1015);
end;
if linesquery.fn('Loaned_To_Type').AsString = 'Supplier’ then
Begin
LinesLookup(‘Loaned_To_Name’,1001);
end,;
end;
end;

This states that if the cursor is placed in field 'Loaned_To' then look at the current entry in field

Constants, Variables, Functions, Procedures 89

4.125

4.126

4.127

‘Loaned_To_Type' and show the relevant drop-down

LinesLookup

For use with
Edit View Scripts

Format: LinesLookup(FieldName, Lookup Number);

This function allows you to create an entry field whose data is populated from another table in
Ostendo using the Lookup Reference Number defined for the Table. The elements that make up
this Function are:
FieldName: The FieldName in the ‘Lines’ record. This should refer to the re-defined name
in the Edit View Master Query and not the database field name.
Lookup Number: The Lookup Numbers as defined in the Scripting Help that refers to the
relevant Tables

This is an example of how you would declare the Values in a ‘Lines’ screen against field (say)
Inventory Adjustment_Type

Begin
DetailLookup('Adjustment_Type',1005);
End.

LinesNewRecord

For use with
Edit View Scripts

Format: LinesNewRecord(DataSet: TpFIBDataSet);

This procedure enables you to prefill a field in the Lines record whenever a new record is being
added. Of course you could amend this in the record unless it has been nominated as a ‘Read
Only’ field. You should define the field in the ‘Lines’ record and the value that you wish to
pre-populate it with. For example:

procedure LinesNewRecord(DataSet: TpFIBDataSet);
begin

DataSet.FN('ltemSourcedBy").AsString := 'Supply from Stock’;
end;

LinesReadOnly

For use with
Edit View Scripts

Format: LinesReadOnly(FieldName,True);

This function allows you to define that a field is Read-Only and cannot be amended. This is useful
(a) when a field is copied from the main Ostendo Tables and cannot be amended in the Edit View,
or (b) an Edit View has been created specifically for a User in which the data can be seen but not
amended
The elements that make up this function are:
FieldName: The FieldName in the ‘Lines’ record. This should refer to the re-defined name
in the Edit View Master Query and not the database field name.

90 Ostendo Scripting Support
True: If this is ‘“True’ then this field cannot be amended in the Edit View. If set to ‘False’
then it can be amended.
This is an example of how you would define that the Lines field covering a Sell Price cannot be
amended
Begin
LinesRead Only('SELL_PRICE',True);
End.
4,128 LinesValidate
For use with
Edit View Scripts
Format: LinesValidate(DisplayValue: Variant; AField: TField);
This procedure allows you to carry out actions against a ‘Lines’ Level field based upon the entry in
the nominated field. This example will validate that a 'Lines' field called (say) Planned_Date_Out
is not earlier than the System Date.
procedure LinesValidate(DisplayValue: Variant; AField: TField);
begin
if AField.fieldname = 'Planned_Date_Out' then
begin
if DisplayValue('Planned_Date_Out').AsDateTime < NOW then
begin
Showmessage(‘Date is before today’);
end;
end;
end;
4.129 LinesValuesCombo

For use with
Edit View Scripts

Format: LinesValuesCombo(FieldName, Values, True);

This function allows you to create an entry field containing pre-defined data which is selected from
a drop-down list. The elements that make up this function are:
FieldName: The FieldName in the ‘Lines’ record. This should refer to the re-defined name
in the Edit View Detail Query and not the database field name.
Values: The Values that are to appear in the drop-down list; separated by a comma
True: If ‘True’ then only the defined Values can be selected. If False then the values are
still displayed for selection but you may type in your own if required

This is an example of how you would declare the Values in a ‘Lines’ screen against field (say)
Activity_Type

Begin
DetailValuesCombo('Activity Type','Repair,Maintenance,Inspection’,True);
End.

Constants, Variables, Functions, Procedures 91

4.130 LineUnitPrice

For use with
Custom Product Script

Format: LineUnitPrice;

This is a Custom Product Script variable which gathers the Customer Price level, The Item Code
and the Quantity being ordered to evaluate the Sell Price. The result is stored against this variable

4.131 LoadSpreadSheet

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: LoadSpreadSheet(FileName);

This will load a Spreadsheet into memory for use with spreadsheet functions found later in this
document. The element that makes up this function is

FileName: The full path of the document. Note: This must be an xIs type of spreadsheet.

In this ‘paper’ example we will load spreadsheet Items.xls and display the content of spreadsheet
row 1, column 2 into memory and, using the SSGetCellText (shown later), extract data from a
specific Cell. This -LoadSpreadSheet - function must always be run before any data can be
extracted from that Spreadsheet.

Begin
LoadSpreadSheet(‘'c:\Items.xIs");
Showmessage(uppercase(SSGetCellText(0,1)));
End.

Note: Column and/or Row 0 in the script refers to the first Colum or Row in the spreadsheet. In
the above example therefore it will extract data from the First Column and the Second Row in the
spreadsheet

4.132 MessageDlg

This is not a specific Ostendo Function but has been included here as it is used extensively in
scripting. It is an alternative to function ShowMessage

For use across all scripting in Ostendo
Format: MessageDlg(Message, mtStyle,Button,HelpContextID)

Message: The Message that will be displayed

MtStyle: The Style of the panel. You should use mtinformation. (Other types used
in general scripting are ‘mterror’, or ‘mtwarning’)

Button: defines the button(s) to be displayed. This should be set to number ‘4'.
(Other Button styles are 1 thru 15)

HelpContextID: Not used...leave as zero

92 Ostendo Scripting Support

This example will return the Message in the panel format specified
Create the following script in Ostendo and run the script

begin
MessageDIg('This is the message’,mtinformation,4,0);
end.

4.133 MoveFile

This procedure enables you to move any file on your network to any other location. This can
optionally be used in combination with Procedures DeleteFile, CopyFile, RenameFile and
CreateDir

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: MoveFile(Source File, Destination File);

Source File: The full path of the file to be copied
Destination File: The full path of the file at its destination

In this example we will move a file from the ‘C’ Drive to the ‘D’ Drive.

begin
MoveFile('C:\Temp\MoveScript.doc','D:\MoveScript.doc');
Showmessage('File Moved');

end.

4.134 OrderScriptRun

For use with
Order Script

Format: OrderScriptRun(BeenRun, Refresh);

This is used as part of an Order Script to annotate if the script has been run, or not. The elements
that make up this function are:

BeenRun: This can be set to ‘True’ or ‘False’

Refresh: This will refresh the screen with any changes identified within this script

In this example we will create an Order Script linked to a Purchase Order. You will natice that the
Purchase Order cannot be printed until the Script has been run. Once the script has been run it
also will update the Tracking Code against the Order

Go into File>Custom Scripts and add a new Custom Script called (say) PurchSupplier. ‘Check’
the ‘This is an Order Script’ checkbox. To define if this script must be acknowledged before the
Order can proceed you should also ‘check’ the ‘Mandatory’ checkbox.

In the ‘Script’ tab enter the following:

var

Constants, Variables, Functions, Procedures 93

4.135

TheSupplier: string;
OrderNo: String;
begin
TheSupplier := GetSourceFieldValue('SUPPLIERY;
OrderNo := GetSourceFieldValue(ORDERNUMBERY);
executeSQL(‘'update Purchaseheader set WorkFlowStatus = "Accepted" where
ORDERNUMBER =" + OrderNo + "");
showmessage(‘'The Tracking Status has been updated);
OrderScriptRun(True,True);
end.

The next step is to tell Ostendo that the script is linked to a Purchase Order. To do this go into
File>System Configuration>Order Scripts and create a new record containing the following

Screen: Select ‘Purchase Orders’ from the drop-down
Script Name: Select PurchSupplier

Now go into Purchasing>Purchase Orders and create a Purchase Order then add a line to the
Order. If you try and pick a line then you will be presented with an error message stating ‘Please
click PurchSupplier before printing’. l.e. OrderScriptRun field in the Purchase Order Header
record is currently set to ‘False’.

You will see a new button (PurchSupplier) on the Batch Entry Bar of the Purchase Order Lines
screen. If you click on this button then the script will be run. This will return the Supplier Name to
the screen in addition to amending the OrderScriptRun field in the Purchase Order Header record
to ‘True’.

This will allow you to continue with printing the Purchase Order in addition to updating the Tracking
Status against the Purchase Order to ‘Accepted’

OstendoAnalysis

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: OstendoAnalysis(AnalysisName, CondValuesCommaText);
This will run the selected Analysis View

Analysis Name: The Name of the Analysis View as known by Ostendo
CondValuesCommaText: If the Analysis View has parameters then this can either be left
blank and the Parameter Entry screen will be presented, or you can enter the Parameters
as part of the script to automatically prefill the Parameter Values. When used the
following format must be adopted:

‘Condition1=Valuel’ + #13 + ‘Condition2=Value2’
Note: The function recognises #13 as a ‘Carriage Return’

In this example we will run the ‘Analysis - Item Listing’ view

Begin
OstendoAnalysis(‘Analysis - Item Listing'),
'From Item Category=Electrical' + #13 +
"To Item Category=Electrical' + #13 +

94

Ostendo Scripting Support

'From Item Code="+ #13 +
‘To Item Code=");
End.

4.136 OstendoChart

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: OstendoChart(ChartName, CondValuesCommaText);
This will run the selected Chart View

Chart Name: The Name of the Chart View as known by Ostendo
CondValuesCommaText: If the Chart View has parameters then this can either be left
blank and the Parameter Entry screen will be presented, or you can enter the Parameters
as part of the script to automatically prefill the Parameter Values. When used the
following format must be adopted:

‘Condition1=Valuel’ + #13 + ‘Condition2=Value2’
Note: The function recognises #13 as a ‘Carriage Return’

In this example we will run ‘Chart - Inventory Values’

Begin
OstendoChart(‘Chart - Inventory Values',
'From Warehouse=Main' + #13 +
"To Warehouse=Secondary' + #13 +
'From Location="+ #13 +
"To Location="+ #13 +
'From Category="+ #13 +
"To Category=");
End.

4.137 OstendoEditView

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: OstendoEditView(EditViewName, CondValuesCommaText);
This will run the selected Edit View

EditViewName: The Name of the Edit View as known by Ostendo
CondValuesCommaText: If the Edit View has parameters then this can either be left
blank and the Parameter Entry screen will be presented, or you can enter the Parameters
as part of the script to automatically prefill the Parameter Values. When used the
following format must be adopted:

‘Condition1=Valuel’ + #13 + ‘Condition2=Value2’
Note: The function recognises #13 as a ‘Carriage Return’

Constants, Variables, Functions, Procedures

4.138

4.139

95

In this example we will run an Edit View called 'Loan Equipment'

Begin
OstendoEditView('Loan Equipment);
End.

Ostendolnquiry

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Ostendolnquiry(InquiryName, CondValuesCommaText);
This will run the selected Pivot View

InquiryName: The Name of the Inquiry as known by Ostendo

CondValuesCommaText: If the Inquiry has parameters then this can either be left blank
and the Parameter Entry screen will be presented, or you can enter the Parameters as
part of the script to automatically prefill the Parameter Values. When used the following

format must be adopted:
‘Condition1=Valuel’ + #13 + ‘Condition2=Value2’
Note: The function recognises #13 as a ‘Carriage Return’

In this example we will run ‘Inquiry- ltems’

Begin
Ostendolnquiry(‘Inquiry - Items’);
End.

OstendoPath

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script
Custom Data Screens
Data Entry Script

Format: OstendoPath;

When used in a script this Constant will locate Ostendo in a Client/Server or Peer to Peer
environment and retain the full path to Ostendo from the PC

In this example we will use the path related to your PC
Begin

Showmessage(OstendoPath);
End.

96

Ostendo Scripting Support

4.140 OstendoPivot

For use with

General Custom Scripts
Screen Data Script
Order Script

Custom Product Script

Format: OstendoPivot(PivotName, CondValuesCommaText);

This will run the selected Pivot View

Pivot Name: The Name of the Pivot View as known by Ostendo
CondValuesCommaText: If the Pivot View has parameters then this can either be left
blank and the Parameter Entry screen will be presented, or you can enter the Parameters
as part of the script to automatically prefill the Parameter Values. When used the
following format must be adopted:

‘Condition1=Valuel’ + #13 + ‘Condition2=Value2’
Note: The function recognises #13 as a ‘Carriage Return’

In this example we will run ‘Pivot - Inventory Transactions’

Begin
OstendoPivot('Pivot - Inventory Transactions',
'From Item Category="+ #13 +
'To Item Category="+ #13 +
'From Item Code=AAAAAAA' + #13 +
'To Item Code=WWWWW' + #13 +
'From Date="+ #13 +
‘To Date=");
End.

4.141 OstendoReport

For use with

General Custom Scripts
Screen Data Script
Order Script

Custom Product Script

Format: OstendoReport(ReportName, Devicelndex, CondValuesCommaText, EmailAddress,
CCAddress, BCCAddress);

This will run the selected Report

Report Name: The Name of the Report as known by Ostendo
Device Index: Specify how the report is to be output. The options are:
0 or Blank = Standard output option selection panel
1 = Select a Printer for printing the report
2 = Immediately print on Default Printer
3 = Email Direct
4 = Email with Dialog
5 = Output to Screen
CondValuesCommaText: If the Report has parameters then this can either be left blank
and the Parameter Entry screen will be presented or you can enter the Parameters here to

Constants, Variables, Functions, Procedures 97

4.142

automatically prefill the Parameter Values. When used the following format must be
adopted:

‘Condition1=Valuel’ + #13 + ‘Condition2=Value2’
Note: The function recognises #13 as a ‘Carriage Return’
EmailAddress: Only required if being sent by Email or EXPORTREPORT ****CCAddress
: Optionally required if being sent by Email
BCCAddress: Optionally required if being sent by Email

**** Note: The EmailAddress can be replaced with the Procedure EXPORTREPORT which allows
you to export the generated pdf document to any location on your network. l.e. The parameter
following this Procedure is the location where you want the Report to be saved

In this example we will print the Location Listing Report

Begin
OstendoReport('ltem Summary Listing',0,
'From Item Category=Electrical' + #13 +
"To Item Category=Electrical' + #13 +
'From Item Code="+ #13 +
"To Item Code="+ #13 +
'Exclude Conditions=No");

End.

In this example we will place the generated report directly under the Ostendo Folder

Begin

OstendoReport('Standard Item Price List',3,",'/EXPORTREPORT',OstendoPath +'
ItemPriceList.pdf',");
End.

ParseString

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: ParseString(TextToParse, Delimiter, IndexOfString);

Parsing takes an input file and looks for the delimiter in the Text. Each delimited section will
become a separate field. You can then analyse the output and extract the relevant sections. The
elements that make up this function are:
TextToParse: The Text to be Parsed
Delimiter: Define the Delimiter within the Text. For example it could be a comma,
semi-colon, etc.
IndexOfString: The identity of the ‘Segment’ that was Parsed. The segments start at zero
and are incremented by 1

In the following exercise the Input file will contain a comma=separated Text of A,B,C,D. The
parsing will output the second (B) segment (I.e IndexOfString = 1)

/I Define the Variable
Var
TheValue: String;

98 Ostendo Scripting Support

/I You can then get the specific Segment using
Begin
TheValue := ParseString('A,B,C,D','",",1);
showmessage('The selected value is ' + TheValue);
End.

4.143 ProcessBarcode

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script
Data Screen Script
Data Entry Script

This takes the entered barcode and interrogates various Tables where barcodes are used and
returns a ‘string’ comprising of the Ostendo Table where the record was found and the
SysUniquelD of that record.

However, if the Barcode occurs more than once across Ostendo then a panel will be returned for
you to select the correct entry

Format: ProcessBarcode(Value,True);

Value: The barcode to be processed

True: The entry options are True or False, ‘False’ is the default. .If set to True then the
Inventory Table is excluded from this process. Note: An Item can be in many locations in
Inventory and, if Inventory is included, then a record will be returned for each Location

To prepare for running the script go into Item 100-2000 and enter Barcode 12345. Also enter
barcode 12346 against Item 100-2001.

Run the following script

/I Define the Variable

Var

TheBarcode: String;

TheltemCode: String;

/I ' You can then ask the question to answer OptionSelect using
Begin
TheBarcode := AskQuestion('Please enter a Barcode', TEXT",",");
TheltemCode := ProcessBarcode(TheBarcode,true);
Showmessage('Your selection is ' + TheltemCode);

End.

If you run the script and enter Barcode 12346 then the Table ITEMMASTER) and SysUniquelD
for the Item will be returned to the text for the Object. If you then repeat this for Barcode 12345
then a panel will be presented to show the two variants of the Item. If you select one then that
selection will be shown in the Object.

Constants, Variables, Functions, Procedures 99

4.144

4.145

QueryValue

For use with
Screen Data Script

Format: QueryValue(FieldName);

This is only used with Screen Data Scripts which interrogates the source record and returns the
contents of a defined field.

FieldName: The Name of a field in the source record

In this exercise we will create a script that will get the Style of a Sales Order as the order is being
created. You should note that this is only used with Screen Data Scripts as the source record is
interrogated and the requested field value is returned. To perpare and run this exercise carry out
the following steps

Go to File>Custom Scripts and add a new Custom Script called (say) OrdStyle and ‘check’ the *
This is a Screen Data script’ checkbox. Click on the ‘Script’ tab and add the following script

var

OrdStatus: String;

begin

OrdStatus := QueryValue('ORDERSTYLE");

showmessage('The Order Style is ' + OrdStatus);

end.

Save and exit the Custom Script screen.

The next step is to tell Ostendo that the script is linked to a Sales Order Header. To do this go
into File>System Configuration>Screen Data Scripts and create a new record containing the
following

Screen: Select ‘Sales Orders’ from the drop-down

Table Name: Select ‘SALESHEADER'’ from the drop-down list

SQL Type: Select ‘Insert’

Script Name: Select the above script Name
Save and exit

Now go into Sales>Sales Orders and create a Sales Order. You will see the showmessage
appearing that indicates that the status has been stored in variable OrdStatus.

ReadComPort

This is primarily used for reading data streams from external media such as barcode scanners. It
will continuously read the input stream for either the timeout duration or when an EndOfDataChar
is encountered.

Format: ReadComPort(Port, TimeoutSeconds, EndOfDataChar, Baudrate);
Port: The Name of the Com Port. Defaults to COM1if not specified.
TimeoutSeconds: The active duration in seconds. Defaults to 5 secs.
EndOfDataChar: Defaults to 13
Baudrate: Defaults to 9600

100 Ostendo Scripting Support

4.146 ReAskAllQuestions

For use with
Custom Product Script

Format: ReAskAllQuestions;

This allows you to display a Button ‘Answer All Questions Again’ on the AskQuestion panel which,
when pressed, will restart the Questions. The button itself is only displayed when you read from,
or write to, this Variable in the script.

In this example we will ask three questions. At any time during the flow you can click on this
button to restart the questions

var
Ansl, Ans2, Ans3: String;
Questionindex: Integer;

procedure QuestionAsk(QIndex: Integer);

begin
case QIndex of
1:
Ansl ;= AskQuestion('Question 1','TEXT','Enter some Text',",Ansl);
2:
Ans2 := AskQuestion('Question 2','TEXT','Enter some Text',",Ans2);
3:
Ans3 := AskQuestion('Question 3','TEXT','Enter some Text',",Ans3);
end;
end;

procedure START;
var
X: Integer;
begin
forx:=1to3do
begin
inc(Questionindex);
QuestionAsk(Questionindex);
if REASKALLQUESTIONS then
begin
REASKALLQUESTIONS := False;
Questionindex :=0;
FinishQuestions;
START,;
exit;
end;
end;
end;

begin

Start;

showmessage(Ansl +', '+ Ans2 +', '+ Ans3);
end.

Constants, Variables, Functions, Procedures 101

4.147 ReAskLastQuestion

For use with
Custom Product Script

Format: ReAskLastQuestion;

This allows you to display a Button ‘Answer Last Question Again’ on the AskQuestion panel which,
when pressed, will ask you to re-enter the answer to the previous question. The button itself is
only displayed when you read from, or write to, this Variable in the script.

In this example we ask three questions. The screen will also include ReAskAllQuestions button
along with this AskLastQuestion button. At any time during the flow you can click on the
AskQuestionButton you can re-enter and answer to the previous question.

var
Ansl, Ans2, Ans3: String;
Questionindex: Integer;

procedure QuestionAsk(QIndex: Integer);

begin
case QIndex of
1:
Ansl ;= AskQuestion('Question 1','TEXT','Enter some Text',",Ansl);
2:
Ans2 := AskQuestion('Question 2','TEXT','Enter some Text',",Ans2);
3:
Ans3 := AskQuestion('Question 3','TEXT','Enter some Text',",Ans3);
end;
end;

procedure START;
var
X: Integer;
begin
forx:=1to3do
begin
inc(Questionindex);
QuestionAsk(Questionindex);
if REASKALLQUESTIONS then
begin
REASKALLQUESTIONS := False;
Questionindex :=0;
FinishQuestions;
START,;
exit;
end
else
if REASKLASTQUESTION then
begin
REASKLASTQUESTION := False;
dec(Questionindex);
QuestionAsk(Questionindex);
START,;
exit;

102

Ostendo Scripting Support

end;
end;

end;

begin

Start;

showmessage(Ansl +','+ Ans2 +', '+ Ans3);
end.

4.148 ReceiveEmalil

For use with

General Custom Scripts
Screen Data Script
Order Script

Custom Product Script

Format: ReceiveEmail(Host, User, Password, DeleteMessages, AttachPath, Port, SSL);

This function allows you to receive emails from your email Service Provider. Having received the
emails you can then extract information from selected emails. The email receipt process
comprises of:

ReceiveEmail; This receives the email(s) and gives each email a Message Number
GetEmailMessage: This allows you to reference a specific Message Number and extract
data from that message

GetEmailAttachmentCount: This counts the number of attachment to a referenced
Message Number

In this exercise we will simply receive the email and carry out a Message Count

The elements that make up this function are:

Host: The email server account name that services your emails. For Example:
pop3.youremailserver.com

User: The pop3 User Name for access to Host.

Password: The pop3 password for access to Host.

Delete Messages: If you wish to delete the messages from the Host machine after receipt
then enter TRUE, other leave blank

AttachPath: This is an optional entry to define path where attachments will be
downloaded. (Defaults to the setting held against the ‘Default email account’ as set up on
your PC)

Port: The standard pop3 port is 110 and this is the default if you leave this blank. An entry
here allows you to change this Port setting

SSL: This should be either ‘True’ or ‘False’ (Defaults to ‘False’)

In the following exercise we will receive emails and carry out a message count.

It is suggested that you first send a couple of emails using the sendmailmessage function and
then run this routine which includes the GetEmailMessage and GetEmailAttachment functions.

Create a new Custom Script with the following. Amend the ‘Const’ values to suit your environment

Const
Host = 'pop3.myemailhost.com’;
User = 'YourUserName';

Constants, Variables, Functions, Procedures 103

Password = 'yourpassword’;
Var
MessageCount,AttachmentCount,x,y: Integer;
MessageBody, MessageFrom,MessageSubject,AttachmentFileName: String;
begin
MessageCount := ReceiveEmail(Host,User,Password);
Showmessage('Number of Messages is ' + inttostr(MessageCount));
For x := 1 to MessageCount do
Begin
MessageSubject := GetEmailMessage('SUBJECT' x);
MessageFrom := GetEmailMessage('(FROMADDRESS' x);
MessageBody := GetEmailMessage('BODY",x);
Showmessage('The contents for email ' + inttostr(x) + 'is:' + #13 +
'Subject: ' + MessageSubject + #13 +
'From: ' + MessageFrom + #13 +
'‘Body: ' + MessageBody);
AttachmentCount := GetEmailAttachmentCount(x);
Fory := 1 to AttachmentCount do
Begin
AttachmentFileName := GetEmailMessage('ATTACHMENT',x,y);
Showmessage(AttachmentFileName);
end;
end;
end.

4.149 RefreshActiveScreenHeader

For use with
Screen Data Scripts

Format: RefreshActiveScreenHeader := true;

This relates specifically to ‘Related Menu’ scripts whereby if a change is made to the linked Header
then this function will refresh the data displayed in that linked Header screen.

To see this in action go into Inventory>ltems and create a new ltem

Next, go to Go into File>Custom Scripts and add a new Custom Script called (say) ltemChange.

In the ‘Script’ tab enter the following:

begin

executeSQL(‘'update itemmaster set TEMBARCODE = ITEMBARCODE || "Z" where
itemcode =" + queryvalue('I TEMCODE") +");

refreshactivescreenheader := true ;

end.

Save and exit the Custom Script screen.

The next step is to tell Ostendo that the script is linked to the Item table. To do this go into
File>System Configuration>Screen Data Scripts and create a new record containing the
following

Screen: Select ‘Items’ from the drop-down

Table Name: Select ITEMMASTER’ from the drop-down list

SQL Type: Select ‘Update’

104

Ostendo Scripting Support

4.150

4.151

4.152

Script Name: Select the above script Name
Save and exit
If you now go back to the Item Master screen and make a change to any field except the Barcode
field. If you ‘Save’ the change you will find that the Barcode field is updated with a 'Z’

RefreshActiveScreenLine

For use with
Screen Data Scripts

Format: RefreshActiveScreenLine := true;

This relates specifically to ‘Related Menu’ scripts whereby if a change is made to the linked Order
Line then this function will refresh the data displayed in that linked Order Line screen.

For further information see RefreshActiveScreenHeader

RefreshJobCalendar

If you have the Job Calendar open and you make changes to Job Activities (E.g. Resource status)
via a script then those changes will not be reflected in the current display. This procedure will
refresh the Job Calendar

RelatedMenultemClicked

For use with
Edit View Scripts

Format: Procedure RelatedMenultemClicked(Menulndex: Integer);

This Procedure is used in combination with function AddRelatedMenultem and allows you to add
your own related screens to the ‘Related’ Button in the Edit View Panel

The elements that make up this procedure are:
Menulndex: The Menulndex as determined by the Procedure AddRelatedMenultem

In the following example we will assume that you already have a related screen and we are going
to add this to the ‘Related’ button in that view.

This Function determines the ‘Index Number’ in the List of Related screens displayed under the *
Related’ button. To get the Index Number add the following to the end of the Edit View Script.

Begin
AddRelatedMenultem('Screen Name');
End.
Where you should replace 'Screen Name' with the name of your Screen.

If you go into the Edit View then you will see this option presented when you click on the ‘Related’
button. Now let us run this procedure.

If it is the only screen under the Related button then its Index will be 0 therefore add this to the Edit
View Script under the RelatedMenultemClicked Procedure.

procedure RelatedMenultemClicked(Menulndex: Integer);

Constants, Variables, Functions, Procedures 105

4.153

4.154

begin
If Menulndex = 0 then
begin
RunSystemAction(‘'Sales', '‘Customers');
end;
end;

If you go into the Edit View and select this under the ‘Related’ button you will find that the
Customer Master screen will be presented.

RelatedScreenRefreshData

For use with
Screen Data Scripts

Format: RelatedScreenRefreshData(HeaderOrLine);

This relates specifically to ‘Related Menu’ scripts whereby if a change is made to the linked Order
Header then this function will refresh the data displayed in that linked Order Header screen.

The element that makes up this function is:
HeaderOrLine: This refers to whether you are refreshing the Order Header or the Order
Line. The options are ‘HEADER’ or ‘LINE’

An example of where this is used can be seen in the ‘Re-allocate Purchase Lines’ script in the
Useful Scripts’ section of this Help

RenamekFile

This procedure enables you to rename any file on your network. This can optionally be used in
combination with Procedures DeleteFile, CopyFile, MoveFile and CreateDir

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: RenameFile(Old File Name, New File Name);

Old File Name: The full path of the file to be renamed
New File Name: The full path of the file at its destination

In this example we will rename a file on the ‘C’ Drive.

begin
RenameFile('C:\Temp\RenameScript.doc', 'C:\Temp\TheScript.doc");
Showmessage('File Renamed);

end.

106

Ostendo Scripting Support

4.155

4.156

ReportMenultemClicked

For use with
Edit View Scripts

Format: Procedure ReportMenultemClicked(Menulndex: Integer);

This Procedure is used in combination with function AddReportMenultem and allows you to add
your Report or Analysis View to the ‘Reports’ Button in the Edit View Panel

The elements that make up this procedure are:
Menulndex: The Menulndex as determined by the Procedure AddReportMenultem

In the following example we will assume that you already have created an Edit View and we are
going to add a report to the ‘Reports’ button in that view.

This Function determines the ‘Index Number’ in the List of Reports displayed under the ‘Reports’
button. To get the Index Number add the following to the end of the Edit View Script.

Begin
AddReportMenultem('Report Name);
End.

Where you should replace '‘Report Name' with the name of your Report.

If you go into the Edit View then you will see this option presented when you click on the ‘Reports’
button. Now let us run this procedure.

If it is the only report under the Reports button then its Index will be 0 therefore add this to the Edit
View Script under the ReportMenultemClicked Procedure.

procedure ReportMenultemClicked(Menulndex: Integer);
begin
If Menulndex = 0 then
begin
OstendoReport('Report Name');
end;
end;

If you go into the Edit View and select this under the ‘Reports’ button you will find that the report
will be run.

ReplaceText

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: ReplaceText(TextString, FromText, ToText);

This function allows you to identify a Text and then if a defined string is found within that Text then
replace it with another string.

The elements that make up this function are:

Constants, Variables, Functions, Procedures 107

TextString: The Text being analysed to see if it contains the string to be replaced
FromText: The string being searched for
ToText: The string that will replace the FromText if found

In this example we will search a Text field for 45 and replace it with 99. The resultant Text will be
shown in a Showmessage

/I Define the Variable

Var

TheValue: String;

/I You can then get the result using

Begin

TheValue := ReplaceText('12ABC3456789', '45', '99";
showmessage('The result of the replaced text is ' + TheValue);
End.

4.157 RoundToDecimalPrecision

4.158

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Variable := RoundToDecimalPrecision(Variablel,DecimalPlaces);

This function allows you to round any evaluated Variable to a defined number of decimal places.
The elements that make up this function are:

Variable: The defined variable against which the result will be held.

Variablel: The variable to which this rounding is being applied

DecimalPlaces: Number of decimal places required (defaults to 2 if not specified)

In this example we will convert the entered variable and round to 4 decimal places

/I Define the Variable

Var

TheResult: Double;

/I You can then get the result using

Begin

TheResult := RoundToDecimalPrecision(123.456789, 4);
showmessage('The result of the rounded Value is ' + floattostr(TheResult));
End.

Run

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: Run(FileName, QuoteFileParameterlfContainsSpaces{Opt Default=True});

This function allows you to run any file from within the script. The elements that makes up this
function are:

108 Ostendo Scripting Support

FileName: The full path of the file

QuoteFileParameterifContainsSpaces: This is optional. The default boolean value is
True. This means if you are passing parameters to the exe file, then you should enclose
the parameter string with double-quotes if there are blanks or spaces in the parameter
string. Else specify False.

Note: If you are passing parameters, it is best to check what parameter strings are actually
passed back to your program - especially if you are passing multiple parameters.

In this example we will run Notepad

Begin
Run('Notepad.exe");
End.

or

Begin
Run('Notepad.exe "C:\Temp\test.txt");
End.

or

Begin
Run('Notepad.exe C:\Temp\test.txt ', false);
End.

4.159 RunlnventoryReplenishment

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: RuninventoryReplenishment(Horizon, HorizonDays, ItemFrom, ItemTo,
CategoryFrom, CategoryTo, ABCFrom, ABCTo, ExcludeForecast, MultiLevelExplosion,
ConvertTransferToPurchase, IncludePricingForecast, SpecificSite, SiteName);

This function allows you to run the Inventory Replenishment Routine of Ostendo. The elements
that make up this function are:
Horizon: The scheduling option relating to the Horizon Days. The options are LeadTime
or Fixed
HorizonDays: The number of days relating to the previous option
[temFrom: Enter the start Item Code for the run criteria. Not required if Multi-Level is
False.
ItemTo: Enter the end Item Code for the run criteria. Not required if Multi-Level is False.
CategoryFrom: Enter the start Category Code for the run criteria. Not required if
Multi-Level is False.
CategoryTo: Enter the end Category Code for the run criteria. Not required if Multi-Level
is False.
ABCFrom: Enter the start ABC Code for the run criteria. Not required if Multi-Level is
False.
ABCTo: Enter the end ABC Code for the run criteria. Not required if Multi-Level is False.
ExcludeForecast: This should be either True or False

Constants, Variables, Functions, Procedures 109

MultiLevelExplosion: This should be either True or False to indicate exploding all BOM
contents for this replenishment

ConvertTransferToPurchase: This should either be True or False
IncludePricingForecast: This should either be True or False

SpecificSite: This should either be True or False

SiteName: Enter the Specific Site for this Replenishment

In this example we will run a simple Replenishment

Begin

RuninventoryReplenishment('LeadTime', 7, '100-2000', '100-2006', ‘Composite’, ‘Composite’, ", ",
False, True, False, False, True,'’ABCSite");
End.

4.160 RunSystemAction

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: RunSystemAction(Category, SystemAction);

This function allows you to run any menu-listed screen in Ostendo. The elements that make up
this function are:
Category: The Main Menu Item in Ostendo (Example: Inventory, Purchasing, etc)
SystemAction: The specific screen you wish to run that resides under the above Menu

For example: If you wish to run the Knowledge Base then the entry will be.

Begin
runsystemaction('General','Knowledge Base");
End.

4.161 SaveSpreadSheet

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SaveSpreadSheet(FileName);

This function allows you to save the Spreadsheet you have previously generated using the

SpreadSheet functions shown in this document. The elements that make up this function are:
FileName: The full path of the File to be saved including the File Name with an extension
of .xIs

In this exercise we will load a Spreadsheet using the LoadSpreadSheet function and then save it
using this function

110

Ostendo Scripting Support

4.162

4.163

Begin
LoadSpreadSheet('C:\Test.xIs");
SaveSpreadSheet('C:\Spreadsheet.xIs');
Showmessage('Spreadsheet Saved");
End.

SaveValueToStore

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

This function retrieves values that have been previously stored in memory via the
SaveValueToStore function. The elements that make up this function are:

Name: The Name of the String that is currently in memory

This process will use the SaveValueToStore function to store the value in memory after which we
will use this function to retrieve and display it

Begin
SaveValueToStore('FirstName=Fred");
Showmessage(GetValueFromStore('FirstName"));
End.

SendEmailMessage

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SendEmailMessage(Host, From, Recipients, Subject, Body, Attachments, CC, BCC,
User, Password, Port, SSL);

This function allows you to send an email message from data generated within the script. The
elements that make up this function are:
Host: The email server account name that services the emails. For Example:
smtp.youremailserver.com
From: The sender of the email. Example info@development-x.com
Recipients: The email address of the recipient. If you are sending to more than one
recipient then they can be separated with a semi-colon.
Subject: The entry that will appear in the email Subject line
Body: The entry that will appear in the body section of the email
Attachments: Full Path of the attachment (Example: C:\MyDocument ,doc). Separate by
semi-colon for multiple attachments
CC: The email address of the copied recipient. If you are sending to more than one
recipient then they can be separated with a semi-colon.
BCC: The email address of the ‘Blind’ copied recipient. If you are sending to more than
one recipient then they can be separated with a semi-colon.
User: The User Name for access to Host. (Defaults to the setting held against the
Default email account’ as set up on your PC)

Constants, Variables, Functions, Procedures 111

Password: The password for access to Host. (Defaults to the setting held against the
Default email account’ as set up on your PC)

Port: The Port defined by your email provider. (Defaults to the setting held against the
Default email account’ as set up on your PC)

SSL: This should be either ‘True’ or ‘False’ (Defaults to ‘False’)

In this example we will use Constants to define fixed values (You would obviously insert your own
values linking to your own Host) and then construct the email itself

Const
TheEmailHostName = 'smtp.development-x.com’;
TheEmailSenderAddress = 'Fred@development-x.com’;
TheUserEmail="Email Message Test’;
TheRecipientsEmail = 'Jim@recientsEmail.com’;
TheEmailSubject = 'Email Message Test’;
Begin
SendEmailMessage(TheEmailHostName, TheEmailSenderAddress, TheRecipients
Email,' Test Subject Text','Test email Body Text');
End.

4.164 SendEmailMessageExternal

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SendEmailMessageExternal(Subject,
Body,SenderAddress,SenderName,Recipients, Attachments,RequestReceipt, ShowDialog);

This function allows you to send an email message using an external emalil client instead of the
built-in email client. the Email Client is specified in System Settings / User Options. The Email
Client must be open/active.
The elements that make up this function are:
Subject: The entry that will appear in the email Subject line
Body: The entry that will appear in the body section of the email
SenderAddress: The email address of the sender
SenderName: The name of the Sender
Recipients: the email addresses of the recipients. If you are sending to more than one
recipient then they can be separated with a semi-colon.
Attachments: Full Path of the attachment (Example: C:\MyDocument\abc.doc). Separate
by carriage return (#13) for multiple attachments
RequestReceipt: True or False (default = False)
ShowDialog: True or False (default = True)

In this example we will use Constants to define fixed values (You would obviously insert your own
values linking to your own Host) and then construct the email itself

Const
TheEmailSenderAddress = 'Fred@development-x.com’;
TheSenderName = 'Fred' ;
TheUserEmail="Email Message Test’;
TheRecipientsEmail = 'Jim@recientsEmail.com’;
TheEmailSubject = 'Email Message Test’;

112 Ostendo Scripting Support

Begin
SendEmailMessageExternal(TheEmailSubject, TheUserEmail, TheEmailSenderAd
dress,TheSenderName, TheRecipientsEmalil,",False, True);

End.

4.165 SendESCPOSToPort

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SendESCPOSToPort(EscCommand, Port);

This function allows you to send an escape command to a Port on your network via the Parallel
port. This can, for example’ be used to open a Cash Drawer by touching a button on a
touchscreen. The elements that make up this function are:

ESCCommand: The escape command. For example: 27,112,0

Port: The Port used by the external device being actioned by the Escape Command

4.166 SendFileFTP

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SendFileFTP(Host, User, Password, SourceFileName, DestFileName, PassiveMode,
Port);

This function allows you to send a file to your ftp server so that it is available for download. The
elements that make up this function are:

Host: The ftp server, website hostname or IP Address to which the document or file can
be uploaded.

User: The Username for ftp account. For Example: ftpsite@yourservername.com
Password: The Password for the ftp account.

SourceFileName: The full path name of the file that you are uploading

DestFileName: The name of the uploaded file as it appears on the ftp Server. For
example 'mywebfile.txt' (This file will be placed on the server according to the ftp users
root directory)

PassiveMode: True or False setting for advanced users only. Defaults to False

Port: Optional entry. Allows changing of ftp port if required. This defaults to 25 (which is
the standard ftp port number)

This Example will show you how to upload a file or document to the ftp server. Note: You should
replace the Constants Values below with your own data

Const
Host = '‘www.yourftpprovider.com’;
User = 'ftpuser@yourftpprovider.com’;
password = ‘ftpPassword’;

Constants, Variables, Functions, Procedures 113

4.167

4.168

SourceFileName = 'D:\Temp\ftpTestDocument.txt’;
DestFileName = 'MyTest.txt';

begin
SendFileFTP(Host,User,Password,SourceFileName,DestFileName);
end.

To see that it has uploaded the file to the ftp Server, go to your ftp host site via your Internet
Explorer and point to the file in its location. Note: as we have used the default location in the
above script then a Folder will have been created that equals the Ostendo Company Name.
Example:- http://www.development-x.com/demo/MyTest.txt if the upload was carried out from
within the DEMO company

SendStringToPort

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SendStringToPort(Value, Port);

This function allows you to send a text string to a Port on your network via the Serial port. This is
used to send Text such as the Operators Name to the port...and hence the Display Column. The
elements that make up this function are:

Value: The text that is to be sent to the Port

Port: The Port used by the external device that will use the Text

SetBOMInstructions

For use with
Custom Product Script

This function can only be used in a Script created via Assembly>Custom Products. It uses the
linked Item Code as the prime key when defining the Instructions against the configured BOM
Header

Format: SetBOMInstructions(‘BOMInstructions’);

This defines the detailed instructions to make the Custom Product. The elements that make up
this function are:

BOMInstructions: Unlimited amount of text to describe the actions required to make the
product

Example:
SetBOMiInstructions('Cut the 2000mm Rimu Panel down to ' +
inttostr(DeskLength) + ‘'mm *);

114 Ostendo Scripting Support
4.169 SetBOMLeadTime
For use with
Custom Product Script
This function can only be used in a Script created via Assembly>Custom Products. It uses the
linked Item Code as the prime key when defining the Lead Time against the configured BOM
Header
Format: SetBOMLeadTime(LeadTime);
This defines the anticipated Leadtime to product the Custom Product. The elements that make up
this function are:
LeadTime: The number of Days (integer only) required to produce the product
Example:
SetBOMLeadTime(2);
4.170 SetBOMRunDuration
For use with
Custom Product Script
This function can only be used in a Script created via Assembly>Custom Products. It uses the
linked Item Code as the prime key when defining the Run Duration against the configured BOM
Header
Format: SetBOMRunDuration(RunDuration,’RunDurationScale’);
This defines the total duration to make the Custom Product. The elements that make up this
function are:
RunDuration: Any Number including decimals
RunDurationScale: Either ‘Hours’ or ‘Minutes’. If nothing entered then Minutes is
assumed
Example:
SetBOMRunDuration(45,'Minutes");
4.171 SetBOMSetupDuration

For use with
Custom Product Script

This function can only be used in a Script created via Assembly>Custom Products. It uses the
linked Item Code as the prime key when defining the Setup Duration against the configured BOM
Header

Format: SetBOMSetupDuration(SetupDuration,’SetupDurationScale’);

This defines the total duration to ‘set up’ in preparation for making the Custom Product. The
elements that make up this function are:
SetupDuration: Any Number including decimals
SetupDurationScale: Either ‘Hours’ or ‘Minutes’. If nothing entered then Minutes is
assumed

Constants, Variables, Functions, Procedures 115

Example:
SetBOMSetupDuration(15,'Minutes');

4.172 SetScreenParameter

For use with
General Custom Scripts

This function is used in a Related Menu script and allows you to pass parameters from the current
screen to the Related screen.

Format: SetScreenParameter(Value);

The element that makes up this function is:
Value: The field Value being passed

Example 1:

To see this in action create a new Script called ‘Job Customer’. In the ‘Detail’ tab ‘check’ the *
Add to this Screen’ checkbox and select ‘Job Orders’ from the drop-down list in the adjacent
field. In the ‘Script’ tab add the following script

begin
RunSystemAction('Sales','Customers');
SetScreenParameter('KEYFIELD=CUSTOMERY);
SetScreenParameter(KEYVALUE=" + GetSourceFieldValue(CUSTOMERY);
SetScreenParameter(TABINDEX=1"); // This will open up in the Customer ‘Detail’

screen rather than the ‘List’ screen

end.

Save and exit the Custom Script screen.

Go into Jobs>Job Orders and click on the ‘Related’ button. You will find that the ‘Job Customer’
Custom Script appears in the drop-down list. If you select this then the script will bring up the
Customer Screen relating to this Job Order.

Example 2:

This script allows the user to open relevant Sales Deliveries for a Sales Order they are positioned on from
the Sales Orders screen

var
TheSQL, TheDeliveryNo,TheOrderNumber :string;

begin
TheOrderNumber := GetSourceFieldValue(ORDERNUMBERY);
TheSQL :='select sysuniqueid, OrderNumber, DeliveryNo, DeliveryStatus, PackedBy
from SalesDeliveryHeader where OrderNumber =" + theOrderNumber + "";
TheDeliveryNo ;= DisplayData(TheSQL,'Select a Delivery for Drilldown','DeliveryNo");

If (TheDeliveryNo <> ") then

begin
setscreenparameter(‘’keyfield=DeliveryNo"); {This sets the key field in called screen}
setscreenparameter(‘keyvalue='+ TheDeliveryNo); {This is the selected field value

116

Ostendo Scripting Support

4.173

4.174

from the Displayed List}

setscreenparameter(‘tabindex=1"); {This sets which Tab the called screen will display
in O=List 1=Detail}

SetScreenParameter('INCLUDECLOSEDUPDATED=true"); //can be (True / 1) or
(False / 0) any case

runsystemaction('Sales','Sales Deliveries'); {This actually calls the screen based on
Module & Screen name}

end;
end.

SetWorkflowObjectColour

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SetWorkflowObjectColour(ObjectID, ObjectColour);

This function allows you to amend the colour of an Object within a Workflow. The Object must not
be currently set to ‘Gradient Fill'. This is useful if you wish to have a visual presentation of the
status of an object, etc. The elements that make up this function are:

Object ID: Right-Mouse on the Object in the Workflow to get the ID
Colour: See the defined colours in the Workflow Editor

Having created an object in a workflow find out the Object ID by ‘right-mousing’ on the Object or go
into OstDesigner.

The Colour selection is the standard colour preceded with the letters cl. Alternatively you can
create your own colour against (say) a Tracking Code and then see - in the database - what the
number code is that defines that unique colour. You can then insert the number in place of the
colour. For example you can enter either clAqua or 13959039

Begin
SetWorkflowObjectColour(4,claqua);
Showmessage('Colour Updated);
End.

SetWorkflowObjectGradientColour

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SetWorkflowObjectGradientColour(ObjectID, BeginColour, EndColour);
This function allows you to amend the Gradient colour of an Object within a Workflow. The Object

must be currently set to ‘Gradient Fill'. This is useful if you wish to have a visual presentation of
the status of an object, etc. The elements that make up this function are:

Constants, Variables, Functions, Procedures 117

4.175

4.176

Obiject ID: Right-Mouse on the Object in the Workflow to get the ID
BeginColour: Set the Begin Colour of the Gradient Fill
EndColour: Set the End Colour of the Gradient Fill

Having created an object in a workflow find out the Object ID by ‘right-mousing’ on the Object or go
into OstDesigner.

The Colour selection is the standard colour preceded with the letters cl. Alternatively you can
create your own colour against (say) a Tracking Code and then see - in the database - what the
number code is that defines that unique colour. You can then insert the number in place of the
colour. For example you can enter either clAqua or 13959039

Begin
SetWorkflowObjectGradientColour(4,claqua,clnavy);
Showmessage('Colour Updated);

End.

SetWorkflowObjectHint

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SetWorkflowObjectHint(ObjectID, Hint);
This function allows you to add or amend the Hint held against an Object within a Workflow. Note:
A Hint is the line of text that appears when you move the cursor over the Object. The elements

that make up this function are:

Obiject ID: Right-Mouse on the Object in the Workflow to get the ID
Hint: The Text shown when the cursor moves over the Object

Having created an object in a workflow find out the Object ID by ‘right-mousing’ on the Object or go
into OstDesigner.

This example will create a Hint of ‘This is a Hint’ against the Object
Begin
SetWorkflowObjectHint(4, This is a Hint');

Showmessage('Hint Updated");
End.

SetWorkflowObjectTag

For use with
General Custom Scripts linked to Workflows
Format: SetWorkflowObjectTag(ObjectID,ObjectTag)

ObjectID: Right-Mouse on the Object in the Workflow to get the ObjectID.
ObjectTag: The Reference Number to populate the Object’s Tag field

118

Ostendo Scripting Support

4.177

4.178

This Procedure updates the Tag Number contained in the Object

This example will update the Object with a requested Tag Number. Add an Object to a Workflow.

Create the following script in Ostendo and link the Object to it. If you run the script you can enter a
reference Number. If you then go back to the Workflow Editor and click on this object you will see

that the Tag Number — in the Inspector Panel - now contains the entered reference Number.

SetWorkflowObjectText

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SetWorkflowObjectText(ObjectIlD, ObjectText);

This function allows you to add or amend Text that appears within an Object. The elements that
make up this function are:

Object ID: Right-Mouse on the Object in the Workflow to get the ID
ObjectText: The Text shown within the Object

Having created an object in a workflow find out the Object ID by ‘right-mousing’ on the Object or go
into OstDesigner.

This example will create or overwrite the current Text within an Object. You should note that the
Object itself must be a ‘Text’ object

Begin
SetWorkflowObjectText(4,'Workflow");
Showmessage('Text Updated);

End.

SetWorkflowObjectTransparency

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SetWorkflowObjectTransparency(ObjectID, Transparency);

This function allows you to add or amend the Object so that its transparency can be adjusted if you
wish to view other Objects lying behind this one. The elements that make up this function are:

Obiject ID: Right-Mouse on the Object in the Workflow to get the ID
Transparency: The Transparency value expressed as a percentage

Having created an object in a workflow find out the Object ID by ‘right-mousing’ on the Object or go
into OstDesigner.

To see Transparency in action you need to create two Objects where one partially overlays the
other. We will apply the transparency to the front Object

Constants, Variables, Functions, Procedures 119

4.179

4.180

4.181

Begin
SetWorkflowObjectTransparency(4,50);
Showmessage('Transparency Updated');
End.

SetWorkflowObjectVisible

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SetWorkflowObjectVisible(ObjectlID, Visible);

This function allows you to make an Object Visible or Invisible. The elements that make up this
function are:

Object ID: Right-Mouse on the Object in the Workflow to get the ID
Visible: This can be True or False

Having created an object in a workflow find out the Object ID by ‘right-mousing’ on the Object or go
into OstDesigner.

To hide the Object use the following
Begin
SetWorkflowObjectVisible(4,False);

Showmessage('Object now Invisible");
End.

ShowMessage

This is not a specific Ostendo Function but has been included here as it is used extensively in
scripting. It is an alternative to function MessageDlg

For use across all scripting in Ostendo
Format: Showmessage(Message)
Message: The Message that will be displayed
This example will return the Message. Create the following script in Ostendo and run the script
begin

Showmessage('This is the message’);
end.

ShowProgress

For use with
General Custom Scripts
Screen Data Script

120

Ostendo Scripting Support

Format: ShowProgress(Caption, Max, AllowCancel);
This function allows you to display a progress bar. The elements that make up this function are:

Caption: The caption that will be displayed at the top of the panel
Max: The Maximum Value that you are monitoring
AllowCancel: Shows a ‘Cancel’ button for aborting the progress

This function is used in combination with functions EndProgress and UpdateProgress (and
optionally UpdateProgressCaption). The following example uses the four available functions
related to the Progress Bar

Const
ProgressCount = 2000;
Var
X: Integer;
begin
ShowProgress('My Progress Bar',ProgressCount);
For x := 1 to progressCount do
Begin
if x >= (ProgressCount / 2) then
Begin
UpdateProgressCaption('Getting There");
end;
UpdateProgress(x);
end;
EndProgress;
Showmessage (‘Progress Display Completed");
End.

4.182 SSGetCellText

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SSGetCellText(Col, Row, Sheetindex);

This function allows you to get information from a selected Cell in a Spreadsheet. When using this
function you should first place the Spreadsheet into memory using the LoadSpreadsheet function.
The elements that make up this function are:

Col: The specific Column in the Spreadsheet
Row: The specific Row in the Spreadsheet
Sheetindex: The specific Sheet Number in the Spreadsheet

Select a Spreadsheet on your computer and run the following to load the Spreadsheet into
Memory and then select data from Cell located at columnl Row 1 of the first sheet. You should
note that Sheetindex, column 1 Row 1 in the spreadsheet is known as 0,0 in the function

begin
LoadSpreadSheet('c:\scripttest.xIs");
showmessage(uppercase(SSGetCellText(0,0,0)));
end.

Constants, Variables, Functions, Procedures 121

Of course you would not normally get information from a single cell. Here is a script that uses
SSGetRowCount to determine the number of rows in a spreadsheet and then imports the content
of each row using the SSGetCellText function.

In the following example will import this data into the Categories Table found under
Inventory>Settings>Categories. Firstly create a spreadsheet containing multiple lines, each
containing Item Category and Description.

The next step is to create the script containing the following.

Var
/I define variables x=accumulator, RowCount = Number of Rows with data
X, RowCount :Integer;
begin
/IPoint to your spreadsheet
LoadSpreadSheet('c:\ScriptimportTest.xIs');
/I The zero in brackets refers to the sheet number within the spreadsheet
RowCount := SSGetRowCount(0);
/I Spreadsheets start at column zero and finishes at Count minus 1
for x := 0 to RowCount -1 do
begin
InsertRecord('Categories’,
'‘Category="+ SSGetCellText(0,x) + #13 +
'‘CategoryDescription="+ SSGetCellText(1,x));
end;
showmessage(‘Categories Added");
end.

4.183 SSGetColumnCount

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SSGetColumnCount(Sheetindex);

This function allows you to get information about how many columns are being used in a defined
Spreadsheet. When using this function you should first place the Spreadsheet into memory using
the LoadSpreadsheet function. The elements that make up this function are:

Sheetindex: The specific Sheet Number in the selected Spreadsheet

Select a Spreadsheet on your computer and run the following to load the Spreadsheet into
Memory and then this routine will count the number of columns between the first and last column
used. You should note that Screenindex commences at O for the opening sheet

begin

LoadSpreadSheet('c:\scripttest.xIs");

showmessage('Number of Columns is ' + intToStr(SSGetColumnCount(0)));
end.

122 Ostendo Scripting Support
4.184 SSGetContentColumnCount

For use with

General Custom Scripts

Screen Data Script

Order Script

Custom Product Script
Format: SSGetContentColumnCount(Sheetindex);
This function allows you to get information about how many columns that contain data in a defined
Spreadsheet. l.e. ignore blank columns embedded in the data columns. When using this function
you should first place the Spreadsheet into memory using the LoadSpreadsheet function.
The elements that make up this function are:

Sheetindex: The specific Sheet Number in the selected Spreadsheet
Select a Spreadsheet on your computer and run the following to load the Spreadsheet into
Memory after which this function will count the number of columns that are actually used. You
should note that Screenindex commences at 0 for the opening sheet

begin

LoadSpreadSheet('c:\scripttest.xls");
showmessage('Number of Columns is ' + intToStr(SSGetContentColumnCount(0)));
end.
4.185 SSGetContentRowCount

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SSGetContentRowCount(Sheetindex);

This function allows you to get information about how many rows that contain data in a defined
Spreadsheet. l.e. ignore blank rows embedded in the data rowss. When using this function you
should first place the Spreadsheet into memory using the LoadSpreadsheet function. The
elements that make up this function are:

Sheetindex: The specific Sheet Number in the selected Spreadsheet

Select a Spreadsheet on your computer and run the following to load the Spreadsheet into
Memory after which this function will count the number of rows that are actually used. You should
note that Screenindex commences at 0 for the opening sheet

begin

LoadSpreadSheet('c:\scripttest.xls");

showmessage('Number of Rows is ' + intToStr(SSGetContentRowCount(0)));
end.

Constants, Variables, Functions, Procedures 123

4.186

4.187

SSGetRowCount

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SSGetRowCount(Sheetindex);

This function allows you to get information about how many rows are being used in a defined
Spreadsheet. When using this function you should first place the Spreadsheet into memory using
the LoadSpreadsheet function. The elements that make up this function are:

Sheetindex: The specific Sheet Number in the selected Spreadsheet

Select a Spreadsheet on your computer and run the following to load the Spreadsheet into
Memory and then this routine will count the number of rows between the first and last row used.
You should note that Screenindex commences at 0 for the opening sheet

begin

LoadSpreadSheet('c:\scripttest.xls");

showmessage('Number of Rows is ' + intToStr(SSGetRowCount(0)));
end.

SSSetCellText

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: SSSetCellText(Col, Row, CellText, Sheetindex);

This function allows you to populate individual Cells in a Spreadsheet with Text. When using this
function you should first place the Spreadsheet into memory using the LoadSpreadsheet function.
The elements that make up this function are:

Col: The Column within the spreadsheet containing the Cell. Note Columns always begin
at column 0

Row: The Row within the spreadsheet containing the Cell. Note Rows always begin at
row O

CellText: The Text that you pasting into the Cell

Sheetindex: The specific Sheet Number in the selected Spreadsheet. Note Sheet
Indexes always begin at sheet 0

Select a Spreadsheet on your computer and run the following to load the Spreadsheet into
Memory and then this routine will add the specified Text into the defined Cell. After confirming the
update the final line saves the spreadsheet currently held in memory

begin
LoadSpreadSheet('c:\scripttest.xls");
SSSetCellText(0,0,'My Added Text',0);
SaveSpreadSheet(‘'c:\Spreadsheet.xIs");
showmessage('Text Added and Spreadsheet saved");

124

Ostendo Scripting Support

4.188

4.189

end.

UpdateProgress

For use with
General Custom Scripts
Screen Data Script

Format: UpdateProgress(Value);

This function allows you to update the Progress Bar with the current Value. The elements that
make up this function are:

Value: The variable used to increment the Progress Bar

This is used in combination with functions ShowProgress and EndProgress (and optionally
UpdateProgressCaption). The following example uses the four available functions related to the
Progress Bar

Const
ProgressCount = 2000;
Var
X: Integer;
begin
ShowProgress('My Progress Bar',ProgressCount);
For x := 1 to progressCount do
Begin
if x >= (ProgressCount / 2) then
Begin
UpdateProgressCaption('Getting There");
end;
UpdateProgress(x);
end;
EndProgress;
Showmessage ('Progress Display Completed");
End.

UpdateProgressCaption

For use with
General Custom Scripts
Screen Data Script
Format: UpdateProgressCaption(Caption);

This function allows you to update the caption on the Progress Bar to reflect the progress or
activity taking place. The elements that make up this function are:

Caption: The caption that will replace the current caption at the top of the Progress panel
This is function is optionally used in combination with functions ShowProgress, UpdateProgress
and EndProgress. The following example uses the four available functions related to the

Progress Bar

Const

Constants, Variables, Functions, Procedures 125

ProgressCount = 2000;
Var
X: Integer;
begin
ShowProgress('My Progress Bar',ProgressCount);
For x := 1 to progressCount do
Begin
if x >= (ProgressCount / 2) then
Begin
UpdateProgressCaption('Getting There");
end;
UpdateProgress(x);
end;
EndProgress;
Showmessage ('Progress Display Completed");
End.

4.190 WorkFlowActiveScheme

For use with

General Custom Scripts linked to Workflows

Format: WorkflowActiveScheme:

This function gets the current Active Scheme

This example will go to another Scheme and then display the name of that Scheme. Create a
Workflow with (say) two schemes and note the scheme names. On the first Scheme add an
Object.

Create the following Standard Script

Var
ActiveScheme: String;

begin
WorkflowChangeScheme('Scheme?2");
ActiveScheme:= WorkflowActiveScheme;
Showmessage('Current Active scheme is ' + ActiveScheme);
end.

** \Where Scheme?2 is the name of the second scheme

Link the object to this script then click on the object. The second Scheme will now be displayed
along with a message telling you the name of the current Scheme.

4.191 WorkFlowChangeScheme

For use with
General Custom Scripts linked to Workflows

Format: WorkflowChangeScheme(SchemeName);

126 Ostendo Scripting Support

This function allows you to change the current Workflow Screen to another that is in the current
Workflow. The elements that make up this function are:

SchemeName: The name of the Scheme which you want to display

This example will show how to go to another Scheme. Create a Workflow with (say) two schemes
and note the scheme names. On the first Scheme add an Object.

Create the following Standard Script
begin
WorkflowChangeScheme('Scheme?2);
end.

** Where Scheme? is the name of the second scheme

Link the object to this script then click on the object. The second Scheme will now be displayed.

4.192 WorkFlowGetLayerVisible

For use with
General Custom Scripts linked to Workflows
Format: Variable:= WorkflowGetLayerVisible(LayerName);

Variable: Function returns ‘True’ or ‘False’
LayerName: The name of the Layer being enquired on

This Function allows you to enquire on the current visibility status of a Layer

Var

OnOrOff: Boolean;

begin
OnOrOff := WorkflowGetLayerVisible('Layerl');
Showmessage(OnOrOff);

end.

4.193 WorkflowObjectLoadPicture

For use with
General Custom Scripts
Screen Data Script
Order Script
Custom Product Script

Format: WorkflowObjectLoadPicture(ObjectID, Filename);

This function allows you to add or amend the current picture that exists in a Picture Object. The
elements that make up this function are:

Obiject ID: Right-Mouse on the Object in the Workflow to get the ID. Note: The Object
must be a Picture Object
Filename: The full path pointing to the Picture

Constants, Variables, Functions, Procedures 127

Having created an object in a workflow find out the Object ID by ‘right-mousing’ on the Object or go
into OstDesigner.

This example will overwrite the current Picture Object. You should note that the Object itself must
be a ‘Picture’ object

Begin
WorkflowObjectLoadPicture(6,'c:\House.jpg");

Showmessage('Picture Updated);
End.

4.194 WorkFlowSetLayerVisible

For use with
General Custom Scripts linked to Workflows
Format: WorkflowSetLayerVisible(LayerName; Visible);

LayerName: The name of the Layer to be made Visible/Invisible
Visible: Set to True or False

This Procedure turns a layer on or off across all Schemes within the Workflow.

128 Ostendo Scripting Support

5 '‘Lookup’ Numbers

The Functions AskMandatoryQuestionWithLookup and AskQuestionWithLookup
use a number to define the table being referenced. These number are:

Ref# Description
1000 PricelLevel

1001 Supplier

1002 Standard Units
1003 Locations

1004 Items

1005 Adjustment Types
1006 Credit Terms
1007 Categories

1008 Inventory Templates
1009 Price Group
1010 Descriptors
1011 Item Batch

1012 Item Colour
1013 Item Grade
1014 Item Size

1015 Customers

1016 Employee Buyer
1017 Tax Groups
1018 Company Address
1019 Purchase Types
1020 Shipping Method
1021 Workflow Status
1022 Tax Codes

1023 Location Groups
1025 Pricing Groups
1027 Analysis Groups
1028 Customer Types
1029 Customer Regions
1030 Customer Codes
1031 Customer Lead Sources
1032 Warranty Codes
1033 Article Types
1034 Article Categories
1035 Supplier Types
1036 Supplier Regions
1037 Supplier Codes
1038 Resources

1039 Departments
1040 Employees

1041 Asset Types
1042 Kitsets

'Lookup’ Numbers

1043
1044
1045
1046
1047
1048
1049
1052
1053
1054
1055
1056
1057
1058
1059
1061
1062
1063
1064
1065
1066
1067
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

Sales Types

Employee Sales Person
Customer Shipping Method
Sales Order Delivery
Descriptors (General Purpose)
Deliveries Ready To Invoice
Job Type

Resources (Assets)
Company (Assets)

Projects
Equipment-Customer Asset
Job Tasks

Task Bills

Job Templates

Warehouse

Job Category

Descriptor (TaskaBill)
Labour Codes

Item Properties

Descriptor Properties
Labour Properties

Contract

Rate Level

Warranty List

List Master

Articles

Template Tasks

Notes Categories

Job Orders

Contract Number

Cost Centre (Excl Map Restricted)
Rate Scales

Project Types

Service Plan Code
Assembly Tracking Code
Assembly Orders

Routing Template

Job Categories

Purchase Orders

Cost Centre (All)

Std Properties

Payment Method

Payment Account
Customer Deposits

Credits

Sales Orders

Sales Orders - Counter

129

130 Ostendo Scripting Support

1094 Invoice Group

1095 Invoices

1096 Invoices- All

1097 Statement Cycles

1098 Call Classifications

1099 Call Sub Classifications

1100 Sales Orders - Deliveries

1101 Locations ReturnSysld

1103 Standard Units - Time Unit

1104 Call Resolution Codes

1105 Items - Custom

1106 Customer Asset Type

1107 Cost Groups

1108 Sales Workflow Status

1109 Invoices-excl credits and planned status
1110 Items - Non Custom

1111 Items - Assembly

1112 Item Revision

1113 Quote Lost Reasons

1114 Job Orders - open and in progress
1115 Assembly Orders - open and in progress
1117 Job Orders - Quotes

1118 Tasks

1119 Steps

1120 Kitsets From Kitset Master

1121 Service Confirm

1122 Invoices - Printed

1123 Users

1124 Manufacturers

1125 Financial batches

1127 Items- from BOMMaster - Assembly Order
1128 Purchase Orders - not closed
1129 Cost Centre - Job no debtor
1130 Call Centre Ticket ID

1131 Catalogue

1132 Scrap Codes

1133 Common text

1135 PO Shipments Workflow Status
1136 Supplier Shipping Type

1137 Currency Codes

1138 Purchase Shipments - not closed
1139 POS Station ID

1140 Payment Method - POS

Using Scripts within a Script 131

6

Using Scripts within a Script

1. You can create your own library of common Functions and Procedures and hold them
independently within - or outside of — Ostendo, then call these from within your Main Script. The
advantage of using this feature is that you do not need to key in full script details every time you
create a Script but can simply quote the name of the 'Sub’ script

To set this up in the main script you are required to add two lines

Uses
'FunctionsLibrary’;

Where Uses tells Ostendo that you are using
'FunctionsLibrary' is the name of the 'Sub’ Script that you are calling

The first line (Uses") MUST be the first line in the Main Script. The next line is the script name.
The following example has a script called 'MainScript' within which the sub script 'FunctionsLibrary’
will be called

Firstly create the Main script called (say) 'MainScript' with the following

uses 'FunctionsLibrary’;

var

TheCustomer,ThePhoneNumber: string;

begin

TheCustomer := AskQuestionWithLookup('Customer’, ",1015);

{This calls a simple procedure within the FunctionsLibrary to display the Customer name
passed}

DisplayCustomer(TheCustomer);

{This calls a simple function within the FunctionsLibrary and returns the phone number for
the Customer passed}

ThePhoneNumber := ReturnPhoneNumber(TheCustomer);

showmessage('The phone number for ' + TheCustomer + ' is ' + ThePhoneNumber +");
end.

Next create a Script called (say) 'FunctionsLibrary' with the following

procedure DisplayCustomer(PassedCustomerName:string);
begin

showmessage(PassedCustomerName);
end;

function ReturnPhoneNumber(PassedCustomerName:string):string;
begin
result := GetSQLResult('select CUSTOMERPHONE from CustomerMaster where
Customer =" + PassedCustomerName + ");
end;

begin
end.

If you now run ‘MainScript' you be asked to select a Customer from the Customer Master file. This
is stored in Variable 'TheCustomer'.

Procedure 'DisplayCustomer’ is now called from "FunctionsLibrary' and the variable ‘'TheCustomer'
passed to it. This procedure will then display the passed Customer Name.

132

Ostendo Scripting Support

Function 'ReturnPhoneNumber' is now called from "FunctionsLibrary' and the Customer's phone
number is extracted from the CustomerMaster record of the passed Customer. This is then
displayed in a Showmessage.

2. Other Options

2.1. Stroing the 'called’ Script

You have three options where to store the 'called’ script and this reflected in the opening line of the
main Script. l.e. If you specify :

uses 'FunctionsLibrary’;
Ostendo will look for the 'FunctionsLibrary' script in Ostendo's Table CUSTOMSCRIPTS

uses 'FunctionsLibrary.txt';
Ostendo will look for file 'FunctionsLibrary.txt' which should be in a folder (which you have
previously created) called 'Functions' located directly under the Ostendo folder (example
C:\Program Files\Ostendo\Functions\FunctionsLibrary.txt)

uses 'D:\Dev-X\Scripts\FunctionsLibrary.txt";
Ostendo will look for file 'FunctionsLibrary.txt' at the location you state

2.2. Encrypted Scripts

You can use either encrypted or unencrypted scripts

Standard Functions and Procedures

Standard Functions and Procedures

function IntToStr(i: Integer): String

function FloatToStr(e: Extended): String

function DateToStr(e: Extended): String

function TimeToStr(e: Extended): String

function DateTimeToStr(e: Extended): String

function VarToStr(v: Variant): String

function StrTolnt(s: String): Integer

function StrToFloat(s: String): Extended

function StrToDate(s: String): Extended

function StrToTime(s: String): Extended

function StrToDateTime(s: String): Extended

function Format(Fmt: String; Args: array): String

function FormatFloat(Fmt: String; Value: Extended): String
function FormatDateTime(Fmt: String; DateTime: TDateTime): String
function FormatMaskText(EditMask: string; Value: string): string
function EncodeDate(Year, Month, Day: Word): TDateTime
procedure DecodeDate(Date: TDateTime; var Year, Month, Day: Word)
function EncodeTime(Hour, Min, Sec, MSec: Word): TDateTime
procedure DecodeTime(Time: TDateTime; var Hour, Min, Sec, MSec: Word)
function Date: TDateTime

function Time: TDateTime

function Now: TDateTime

function DayOfWeek(aDate: DateTime): Integer

function IsLeapYear(Year: Word): Boolean

function DaysInMonth(nYear, nMonth: Integer): Integer
function Length(s: String): Integer

function Copy(s: String; from, count: Integer): String
function Pos(substr, s: String): Integer

function Uppercase(s: String): String

function Lowercase(s: String): String

function Trim(s: String): String

function NameCase(s: String): String

function CompareText(s, s1: String): Integer

function Chr(i: Integer): Char

function Ord(ch: Char): Integer

procedure SetLength(var S: String; L: Integer)

function Round(e: Extended): Integer

function Trunc(e: Extended): Integer

function Int(e: Extended): Integer

function Frac(X: Extended): Extended

function Sqrt(e: Extended): Extended

function Abs(e: Extended): Extended

function Sin(e: Extended): Extended

function Cos(e: Extended): Extended

function ArcTan(X: Extended): Extended

function Tan(X: Extended): Extended

function Exp(X: Extended): Extended

function Ln(X: Extended): Extended

function Pi: Extended

procedure Inc(var i: Integer; incr: Integer = 1)

procedure Dec(var i: Integer; decr: Integer = 1)

procedure ShowMessage(Msg: Variant)

function Validint(cInt: String): Boolean

function ValidFloat(cFlt: String): Boolean

function ValidDate(cDate: String): Boolean

133

134

Ostendo Scripting Support

8.1

Useful Scripts

This section contains useful scripts that you may wish to use. You can simply copy and
paste these into Ostendo File>Custom Scripts

Copy Job Templates

{This script enables you create a Job Template in Ostendo by copying an existing Job template}

var
TheOldTemplate: String;
TheNewTemplate: String;

procedure InsertTemplateMaster(TheOldTemplateCode, TheNewTemplateCode:String);
var
TempQuery, TempQuery2: TpFIBQuery;
TempTrans, TempTrans2: TpFIBTransaction;
X: Integer;
insertSQL: String;
begin
TempTrans := TpFIBTransaction.Create(nil);
TempTrans2 := TpFIBTransaction.Create(nil);
TempQuery := TpFIBQuery.Create(nil);
TempQuery2 := TpFIBQuery.Create(nil);
try
begin
TempTrans.DefaultDatabase := OstendoDB;
TempTrans2.DefaultDatabase := OstendoDB;
TempQuery.Database := OstendoDB;
TempQuery.Transaction := TempTrans;
TempQuery.Options := qoStartTransaction;
TempQuery.SQL.Clear;
TempQuery2.Database := OstendoDB,;
TempQuery2.Transaction := TempTrans2;
TempQuery2.0ptions ;= qoStartTransaction + goAutoCommit;
TempQuery2.SQL.Clear;
TempQuery.SQL.ADD('select
TEMPLATECODE, TEMPLATEDESCRIPTION,TEMPLATESTATUS, TEMPLATENOTES,";
TempQuery.SQL.ADD('CONFIGUREDBYTASK, TASKSEQUENCING from TEMPLATEMASTER
where TEMPLATECODE ="' + TheOldTemplateCode + ";
TempQuery.ExecQuery;
While not(TempQuery.eof) do
begin
insertSQL :="insert into TEMPLATEMASTER
(TEMPLATECODE, TEMPLATEDESCRIPTION,TEMPLATESTATUS,TEMPLATENOTES," +
'CONFIGUREDBYTASK, TASKSEQUENCING) values (' +

"TEMPLATECODE,.:TEMPLATEDESCRIPTION,: TEMPLATESTATUS,.TEMPLATENOTES," +
"CONFIGUREDBYTASK,:TASKSEQUENCING);
TempQuery2.SQL.ADD(insertSQL);
TempQuery2.PN(TEMPLATECODE").asstring := TheNewTemplateCode;
TempQuery2.PN(TEMPLATEDESCRIPTION".asstring := TempQuery.FN(
"TEMPLATEDESCRIPTION").asstring;
TempQuery2.PN(TEMPLATESTATUS").asstring := TempQuery.FN(TEMPLATESTATUS'
).asstring;

Useful Scripts 135

TempQuery2.PN(TEMPLATENOTES").asstring := TempQuery.FN(TEMPLATENOTES'
).asstring;
TempQuery2.PN('CONFIGUREDBYTASK").asstring := TempQuery.FN(
'CONFIGUREDBYTASK?").asstring;
TempQuery2.PN(TASKSEQUENCING).asstring := TempQuery.FN(TASKSEQUENCING'
).asstring;
TempQuery2.ExecQuery;
TempQuery.next;
end;
end;
finally
TempTrans.Free;
TempTrans2.Free;
TempQuery.Close;
TempQuery2.Close;
TempQuery.Free;
TempQuery2.Free;
end;
end;

procedure InsertTemplateTasks(TheOldTemplateCode,TheNewTemplateCode:String);
var
TempQuery, TempQuery2: TpFIBQuery;
TempTrans,TempTrans2: TpFIBTransaction;
X: Integer;
insertSQL.: String;
begin
TempTrans ;= TpFIBTransaction.Create(nil);
TempTrans2 := TpFIBTransaction.Create(nil);
TempQuery := TpFIBQuery.Create(nil);
TempQuery2 := TpFIBQuery.Create(nil);
try
begin
TempTrans.DefaultDatabase := OstendoDB;
TempTrans2.DefaultDatabase := OstendoDB;
TempQuery.Database := OstendoDB;
TempQuery.Transaction := TempTrans;
TempQuery.Options := qoStartTransaction;
TempQuery.SQL.Clear;
TempQuery2.Database := OstendoDB,;
TempQuery2.Transaction := TempTrans2;
TempQuery2.0Options := qoStartTransaction + goAutoCommit;
TempQuery.SQL.ADD('select
TASKSEQUENCE, TASKNAME, TASKDESCRIPTION,TASKTOJOBLINES,";
TempQuery.SQL.ADD(
"TASKBILLCODE, TASKBILLDESCRIPTION, TASKBILLUNIT,TASKBILLQTY,");
TempQuery.SQL.ADD(
"TASKINSTRUCTIONS, TASKESTIMATEDDURATION,DURATIONSCALE,DEPARTMENTCODE'

);

TempQuery.SQL.ADD(' from TEMPLATETASKS where TEMPLATECODE =" +
TheOldTemplateCode + ";

TempQuery.ExecQuery;

While not(TempQuery.eof) do

begin

InsertSQL :="insert into TemplateTasks
(TEMPLATECODE, TASKSEQUENCE, TASKNAME, TASKDESCRIPTION,TASKTOJOBLINES," +
"TASKBILLCODE, TASKBILLDESCRIPTION, TASKBILLUNIT,TASKBILLQTY," +

136

Ostendo Scripting Support

"TASKINSTRUCTIONS, TASKESTIMATEDDURATION,DURATIONSCALE,DEPARTMENTCODE)
values (' +

"TEMPLATECODE,.TASKSEQUENCE,:.TASKNAME,. TASKDESCRIPTION,:. TASKTOJOBLINES,'
+
"TASKBILLCODE,. TASKBILLDESCRIPTION,: TASKBILLUNIT,:TASKBILLQTY," +

"TASKINSTRUCTIONS,:. TASKESTIMATEDDURATION,:DURATIONSCALE,.DEPARTMENTCOD
SF
TempQuery2.SQL.Clear;
TempQuery2.SQL.ADD(insertSQL);
TempQuery2.PN(TEMPLATECODE").asstring := TheNewTemplateCode;
TempQuery2.PN(TASKSEQUENCE).asinteger := TempQuery.FN(TASKSEQUENCE'
).asinteger;
TempQuery2.PN(TASKNAME").asstring := TempQuery.FN('TASKNAME').asstring;
TempQuery2.PN(TASKDESCRIPTION").asstring := TempQuery.FN('TASKDESCRIPTION'
).asstring;
TempQuery2. PN(TASKTOJOBLINES").asstring := TempQuery.FN(TASKTOJOBLINES'
).asstring;
TempQuery2.PN('TASKBILLCODE).asstring := TempQuery.FN('TASKBILLCODE').asstring;
TempQuery2.PN(TASKBILLDESCRIPTION").asstring := TempQuery.FN(
"TASKBILLDESCRIPTION").asstring;
TempQuery2.PN(TASKBILLUNIT").asstring := TempQuery.FN('TASKBILLUNIT").asstring;
TempQuery2.PN(TASKBILLQTY").value := TempQuery.FN('TASKBILLQTY").value;
TempQuery2.PN(TASKINSTRUCTIONS").asstring := TempQuery.FN(TASKINSTRUCTIONS'
).asstring;
TempQuery2.PN(TASKESTIMATEDDURATION").value := TempQuery.FN(
"TASKESTIMATEDDURATION').value;
TempQuery2.PN('DURATIONSCALE").asstring := TempQuery.FN(DURATIONSCALE'
).asstring;
TempQuery2.PN('DEPARTMENTCODE").asstring := TempQuery.FN(DEPARTMENTCODE'
).asstring;
TempQuery2.ExecQuery;
TempQuery.next;
end;
end;
finally
TempTrans.Free;
TempTrans2.Free;
TempQuery.Close;
TempQuery2.Close;
TempQuery.Free;
TempQuery2.Free;
end;
end;

procedure InsertTemplateResources(TheOldTemplateCode, TheNewTemplateCode:String);
var

TempQuery, TempQuery2: TpFIBQuery;

TempTrans,TempTrans2: TpFIBTransaction;

X: Integer;

insertSQL.: String;
begin

TempTrans := TpFIBTransaction.Create(nil);

TempTrans2 := TpFIBTransaction.Create(nil);

TempQuery := TpFIBQuery.Create(nil);

Useful Scripts 137

TempQuery2 := TpFIBQuery.Create(nil);
try
begin
TempTrans.DefaultDatabase := OstendoDB;
TempTrans2.DefaultDatabase := OstendoDB;
TempQuery.Database := OstendoDB;
TempQuery.Transaction := TempTrans;
TempQuery.Options := qoStartTransaction;
TempQuery.SQL.Clear;
TempQuery2.Database := OstendoDB,;
TempQuery2.Transaction := TempTrans2;
TempQuery2.0Options := qoStartTransaction + goAutoCommit;
TempQuery.SQL.ADD('select TASKNAME,RESOURCETYPE, RESOURCENAME);
TempQuery.SQL.ADD(' from TEMPLATERESOURCES where TEMPLATECODE =" +
TheOldTemplateCode + ";
TempQuery.ExecQuery;
While not(TempQuery.eof) do
begin
InsertSQL :='insert into TEMPLATERESOURCES
(TEMPLATECODE, TASKNAME,RESOURCETYPE, RESOURCENAME) values (' +
"TEMPLATECODE,:.TASKNAME,:RESOURCETYPE, :RESOURCENAME);
TempQuery2.SQL.Clear;
TempQuery2.SQL.ADD(insertSQL);
TempQuery2.PN(TEMPLATECODE).asstring := TheNewTemplateCode;
TempQuery2.PN(TASKNAME").asstring := TempQuery.FN('TASKNAME").asstring;
TempQuery2.PN(RESOURCETYPE").asstring := TempQuery.FN(RESOURCETYPE')
.asstring;
TempQuery2.PN(RESOURCENAME).asstring := TempQuery.FN(RESOURCENAME'
).asstring;
TempQuery2.ExecQuery;
TempQuery.next;
end;
end;
finally
TempTrans.Free;
TempTrans2.Free;
TempQuery.Close;
TempQuery2.Close;
TempQuery.Free;
TempQuery2.Free;
end;
end;

procedure InsertTemplateLines(TheOldTemplateCode, TheNewTemplateCode:String);
var
TempQuery, TempQuery2: TpFIBQuery;
TempTrans,TempTrans2: TpFIBTransaction;
X: Integer;
insertSQL.: String;
begin
TempTrans := TpFIBTransaction.Create(nil);
TempTrans2 := TpFIBTransaction.Create(nil);
TempQuery := TpFIBQuery.Create(nil);
TempQuery2 := TpFIBQuery.Create(nil);
try
begin
TempTrans.DefaultDatabase := OstendoDB;

138

Ostendo Scripting Support

TempTrans2.DefaultDatabase := OstendoDB;

TempQuery.Database := OstendoDB;

TempQuery.Transaction := TempTrans;

TempQuery.Options := qoStartTransaction;

TempQuery.SQL.Clear;

TempQuery2.Database := OstendoDB,;

TempQuery2.Transaction := TempTrans2;

TempQuery2.0Options := qoStartTransaction + goAutoCommit;

TempQuery.SQL.ADD('select
TASKNAME,LINENUMBER,CODETYPE,LINECODE,LINEDESCRIPTION, LINEUNIT,";

TempQuery.SQL.ADD(TEMPLATEQTY,LINENOTES),

TempQuery.SQL.ADD(' from TEMPLATELINES where TEMPLATECODE ="' +
TheOldTemplateCode + ";

TempQuery.ExecQuery;

While not(TempQuery.eof) do

begin

InsertSQL :='insert into TemplateLines
(TEMPLATECODE, TASKNAME,LINENUMBER,CODETYPE,LINECODE,LINEDESCRIPTION,
LINEUNIT," +
‘TEMPLATEQTY,LINENOTES) values (' +

"TEMPLATECODE,.: TASKNAME,:LINENUMBER,:CODETYPE,:.LINECODE,:LINEDESCRIPTION,
LINEUNIT," +
"TEMPLATEQTY,.LINENOTES);
TempQuery2.SQL.Clear;
TempQuery2.SQL.ADD(insertSQL);
TempQuery2.PN(TEMPLATECODE").asstring := TheNewTemplateCode;
TempQuery2.PN(TASKNAME").asstring := TempQuery.FN('TASKNAME").asstring;
TempQuery2.PN(LINENUMBER).asinteger := TempQuery.FN(LINENUMBER).asinteger;
TempQuery2.PN('CODETYPE").asstring := TempQuery.FN('CODETYPE').asstring;
TempQuery2.PN('LINECODE").asstring := TempQuery.FN('LINECODE').asstring;
TempQuery2.PN(LINEDESCRIPTION").asstring := TempQuery.FN(LINEDESCRIPTION
").asstring;
TempQuery2.PN('LINEUNIT").asstring := TempQuery.FN('LINEUNIT").asstring;
TempQuery2.PN(TEMPLATEQTY").value := TempQuery.FN(TEMPLATEQTY").value;
TempQuery2.PN(LINENOTES").asstring := TempQuery.FN('LINENOTES').asstring;
TempQuery2.ExecQuery;
TempQuery.next;
end;
end;
finally
TempTrans.Free;
TempTrans2.Free;
TempQuery.Close;
TempQuery2.Close;
TempQuery.Free;
TempQuery2.Free;
end;
end;

begin

TheOldTemplate := AskMandatoryQuestionWithLookup('Old Template','Please select an Existing
Template to Copy',1058);

TheNewTemplate := AskMandatoryQuestion('New Template', TEXT','Please Enter the New
Template Code',");

InsertTemplateMaster(TheOldTemplate, TheNewTemplate);

Useful Scripts 139

8.2

InsertTemplateTasks(TheOldTemplate, TheNewTemplate);
InsertTemplateResources(TheOldTemplate, TheNewTemplate);
InsertTemplateLines(TheOldTemplate, TheNewTemplate);

end.

Distinct Value Check

{This script allows you to interrogate any column in a Spreadsheet and returns the distinct values
within that column. This is very useful when importing data into Ostendo where certain fields in
Ostendo should be pre-populated with values from the spreadsheet.}

var
OpenDlg: TOpenDialog;
x,ColumnNumber: Integer;
ImportFile: String;
OutputList: TStringlist;
TemplList: TStringList;

function GetlmportFile: string;

var
OpenDlg: TOpenDialog;

begin
OpenDlg := TOpenDialog.Create(Nil);
try

OpenDlg.InitialDir := 'C:\;
OpenDlg.Filter :='Excel Files (*.csv)|*.csV|All Files (*.*)[*.*;
if OpenDlg.Execute then
Result := OpenDlg.filename
else
Result :=";
finally
OpenDlg.Free;
end;
end;

{Main Code Section}
begin
OutputList ;= TStringList.Create;
TemplList := TStringList.create;
ImportFile := GetimportFile;
if trim(ImportFile) = " then exit;
try
ColumnNumber := AskQuestion('Column Number','INTEGER','Please enter the Column
Number',");
TemplList.LoadFromFile(ImportFile);
for x ;= 0 to TempList.Count - 1 do
begin
if OutputList.IndexOf(trim(ParseString(TempList.Strings[x],",',(ColumnNumber - 1)))) < 0 then
begin
OutputList.Add(trim(ParseString(TempList.Strings[x],",',(ColumnNumber - 1))));
end;
end;
OutputList.SaveToFile('c:\DistinctValues.txt’);
run(‘c:\DistinctValues.txt’);

140 Ostendo Scripting Support
finally
TemplList.free;
OutputList.free;
end;
end.
8.3 Key Daily Statistics

{This Example generates Key daily statistics from your database and either displays it on your
screen or emails it to nominated recipients

The KPI's contained in this script are split into 6 sections
1 = Job Order Statistics
2 = Sales Orders Statistics
3 = POS Statistics
4 = Invoice Statistics
5 = Debtor Statistics
6 = Inventory and WIP Statistics

You can define an unlimited number of Email recipients and, against each recipient, nominate
which of the above sections they are allowed to see.

Other points regarding this script.

1. You can run the script and have the results returned to your screen. This useful if you wish to
view the results when amending the KPIs. This is the method currently set in the script below.

2. As scripts can be run from the CMD line on your PC this script can be scheduled to
automatically run at any time day or night. In this example it is assumed that it will be run after
midnight and shows statistics from the previous day. }

var {Variable section}

EmailList: TStringlist;
TheKPIOptions,KPINumber,DailySalesOrderCount,DailyJobOrderCount: String;
X,¥,z,TheOptionsLength: Integer;

TheUserEmail, TheEmailBody,DailySalesOrderValue,CurrentDebtorBalance : String;
CurrentStockValue, TheSQL, TheAgingID, AgingMethod: string;
Period1Caption,Period2Caption,Period3Caption,Period4Caption,Period5Caption: string;
PeriodACaption,PeriodBCaption,OverdueSalesValue,DailyPaymentsin: string;
Period1DebtorBalance, Period2DebtorBalance, Period3DebtorBalance: string;
Period4DebtorBalance, Period5DebtorBalance, TotalDebtorBalance: string;
DailyDepositsTaken,DailyAvgSalesOrderValue: string;
DailyJobOrderValue,DailyAvgJobOrderValue: string;
CurrentAssemblyWIP,CurrentJobWIP: string;
DailySalesInvoiceValue,DailyAvgSalesinvoiceValue,DailySalesIinvoiceCount: string;
DailyPOSValue,DailyAvgPOSValue,DailyPOSCount: string;

TheCompanyName: string;

AgingRun : boolean;

Const {Constant section}

{You will need to change the Email Host name and the sender address}

TheEmailHostName = 'mail.development-x.com’;
TheEmailSenderAddress = 'KPI@development-x.com’;

Useful Scripts 141

TheEmailSubject = 'Ostendo Key Daily Statistics for ' + datetostr(date - 1);

{The constant below allows testing of this script without emailing

If set to False a popup message will display for each email recipient
rather than actually emailing, otherwise if it is True emails will be
sent to each recipient}

EmailTheResult = false;

procedure CreateKPIEmailsAndSend;

begin

{Email Section with KPI routines per recepient}

try
EmailList := TStringList.Create;
{All email recepients are defined based on the follwoing structure.
The first field is the email address with a colon (;) seperating it
from the Daily statistic groups required for that recepient. Each
statistic group number is seperated by a comma (,). An example of
the syntax is below. Many recepients with varying statistic group
options can be defined}
EmailList.add('info@development-x.com:1,2,3,4,5,6"); {All Groups}
EmailList.add('sales@development-x.com:2,4,5,6"); {Typical distribution Groups}
{The group numbers are as follows:
1 = Job Order Statistics
2 = Sales Orders Statistics
3 = POS Statistics

4 = Invoice Statistics
5 = Debtor Statistics
6 = Inventory and WIP Statistics}

AgingRun := false;

for x := 0 to EmailList.count - 1 do

begin
TheUserEmail := ParseString(EmailList.strings[x], "', 0);
TheKPIOptions := ParseString(EmailList.strings[x], "', 1);

for z := 0 to NoOfKPIS do
begin
KPINumber := ParseString(TheKPIOptions, ',', z);

case KPINumber of

'1": {Job Order Statistics}
begin
TheEmailBody := TheEmailBody + #13 + #13 + 'Job Order Statistics';
TheEmailBody := TheEmailBody + #13 +* ",

if GetSQLResult('select count(sysuniqueid) from JobHeader where (orderdate + 1)= "now™)
= null then
begin
DailyJobOrderCount :='0";
end
else
begin
DailyJobOrderCount := GetSQLResult('select count(sysuniqueid) from JobHeader where

(orderdate + 1)= "now"");

142

Ostendo Scripting Support

end;
TheEmailBody := TheEmailBody + #13 + ' Daily Job Order Count: ' + DailyJobOrderCount;

if GetSQLResult('select avg(ORIGINALORDERAMOUNT) from JobHeader where (orderdate
+ 1)="now") = null then
begin
DailyAvgJobOrderValue :='0';
end
else
begin
DailyAvgJobOrderValue := GetSQLResult('select avg(ORIGINALORDERAMOUNT) from
JobHeader where (orderdate + 1)= "now™);
end;
TheEmailBody := TheEmailBody + #13 + ' Daily Average Order Value: ' +
FormatFloat('$### ###,##0.00' strtofloat(DailyAvgJobOrderValue));

if GetSQLResult('select sum(ORIGINALORDERAMOUNT) from JobHeader where
(orderdate + 1)= "now™) = null then
begin
DailyJobOrderValue :="'0";
end
else
begin
DailyJobOrderValue := GetSQLResult('select sum(ORIGINALORDERAMOUNT) from
JobHeader where (orderdate + 1)= "now™);
end;
TheEmailBody := TheEmailBody + #13 + ' Daily Job Order Value: ' +
FormatFloat('$### ###,##0.00' strtofloat(DailyJobOrderValue));
end;
'2". {Sales Order Statistics}
begin
TheEmailBody := TheEmailBody + #13 + #13 + 'Sales Order Statistics';
TheEmailBody := TheEmailBody + #13 + "

if GetSQLResult('select count(sysuniqueid) from SalesHeader where (orderdate + 1)= "now™
) = null then
begin
DailySalesOrderCount :="'0";
end
else
begin
DailySalesOrderCount := GetSQLResult('select count(sysuniqueid) from SalesHeader
where (orderdate + 1)= "now"");
end;
TheEmailBody := TheEmailBody + #13 + ' Daily Sales Order Count: ' +
DailySalesOrderCount;

if GetSQLResult('select avg(ORIGINALORDERAMOUNT) from SalesHeader where
(orderdate + 1)= "now™) = null then
begin
DailyAvgSalesOrderValue :='0";
end
else
begin
DailyAvgSalesOrderValue := GetSQLResult('select avg(ORIGINALORDERAMOUNT) from

SalesHeader where (orderdate + 1)= "now™);

Useful Scripts 143

end;
TheEmailBody := TheEmailBody + #13 + ' Daily Average Order Value: ' +
FormatFloat('$### ###,##0.00',strtofloat(DailyAvgSalesOrderValue));

if GetSQLResult('select sum(ORIGINALORDERAMOUNT) from SalesHeader where
(orderdate + 1)= "now™) = null then
begin
DailySalesOrderValue :="'0';
end
else
begin
DailySalesOrderValue := GetSQLResult('select sum(ORIGINALORDERAMOUNT) from
SalesHeader where (orderdate + 1)= "now™);
end;
TheEmailBody := TheEmailBody + #13 + ' Daily Sales Order Value: ' +
FormatFloat('$### ###,##0.00' strtofloat(DailySalesOrderValue));

if GetSQLResult('select sum(REMAININGQTY * ORDERUNITPRICE) from
SalesLines,SalesHeader where (salesLines.Requireddate + 1) <= "now" and
SalesLines.Linestatus = "Open" and SalesLines.OrderNumber = SalesHeader.Ordernumber and
SalesHeader.orderstatus <> "Closed" and SalesHeader.orderstatus <> "Lost" and
SalesHeader.orderstatus <> "Quote" and SalesHeader.orderstatus <> "Planned™) = null then
begin
OverdueSalesValue :='0"
end
else
begin
OverdueSalesValue := GetSQLResult('select sum(REMAININGQTY * ORDERUNITPRICE)
from SalesLines,SalesHeader where (salesLines.Requireddate + 1) <= "now" and
SalesLines.Linestatus = "Open" and SalesLines.OrderNumber = SalesHeader.Ordernumber and
SalesHeader.orderstatus <> "Closed" and SalesHeader.orderstatus <> "Lost" and
SalesHeader.orderstatus <> "Quote" and SalesHeader.orderstatus <> "Planned"");
end;
TheEmailBody := TheEmailBody + #13 + ' Overdue Sales Value: ' +
FormatFloat('$### ###,##0.00',strtofloat(OverdueSalesValue));
end;
'3": {POS Statistics}
begin
TheEmailBody := TheEmailBody + #13 + #13 + 'POS Statistics';
TheEmailBody := TheEmailBody + #13 +* "

if GetSQLResult('select count(sysuniqueid) from POSHeader where (saledate + 1)= "now"
and (SALESTATUS = "Invoiced" or SALESTATUS = "OnHold")") = null then
begin
DailyPOSCount :='0';
end
else
begin
DailyPOSCount := GetSQLResult('select count(sysuniqueid) from POSHeader where
(saledate + 1)= "now" and (SALESTATUS = "Invoiced" or SALESTATUS = "OnHold")";
end;
TheEmailBody := TheEmailBody + #13 + ' Daily POS Count: ' + DailyPOSCount;

if GetSQLResult('select avg(SALENETTAMOUNT) from POSHeader where (saledate + 1)=
"now" and (SALESTATUS = "Invoiced" or SALESTATUS = "OnHold")") = null then
begin

144

Ostendo Scripting Support

DailyAvgPOSValue :='0'
end
else
begin
DailyAvgPOSValue := GetSQLResult('select avg(SALENETTAMOUNT) from POSHeader
where (saledate + 1)= "now" and (SALESTATUS = "Invoiced" or SALESTATUS = "OnHold")");
end;
TheEmailBody := TheEmailBody + #13 + ' Daily Average POS Value: ' +
FormatFloat('$### ###,##0.00' strtofloat(DailyAvgPOSValue));

if GetSQLResult('select sum(SALENETTAMOUNT) from POSHeader where (saledate + 1)=
"now" and (SALESTATUS = "Invoiced" or SALESTATUS = "OnHold")") = null then
begin
DailyPOSValue :='0";
end
else
begin
DailyPOSValue := GetSQLResult('select sSum(SALENETTAMOUNT) from POSHeader
where (saledate + 1)= "now" and (SALESTATUS = "Invoiced" or SALESTATUS = "OnHold")";
end;
TheEmailBody := TheEmailBody + #13 + ' Daily POS Value: ' +
FormatFloat('$### ###,##0.00' strtofloat(DailyPOSValue));
end;
‘4" {Invoice Statistics}
begin
TheEmailBody := TheEmailBody + #13 + #13 + 'Sales Invoice Statistics';
TheEmailBody := TheEmailBody + #13 +* "

if GetSQLResult('select count(sysuniqueid) from SalesInvoiceHeader where (invoicedate +
1)="now™) = null then
begin
DailySaleslnvoiceCount :='0';
end
else
begin
DailySalesinvoiceCount := GetSQLResult('select count(sysuniqueid) from
SalesInvoiceHeader where (invoicedate + 1)= "now"");
end;
TheEmailBody := TheEmailBody + #13 + ' Daily Sales Invoice Count: ' +
DailySalesInvoiceCount;

if GetSQLResult('select avg(INVOICENETTAMOUNT) from SaleslinvoiceHeader where
(invoicedate + 1)= "now™) = null then
begin
DailyAvgSalesinvoiceValue :='0';
end
else
begin
DailyAvgSalesinvoiceValue := GetSQLResult('select avg(INVOICENETTAMOUNT) from
SalesInvoiceHeader where (invoicedate + 1)= "now"");
end;
TheEmailBody := TheEmailBody + #13 + ' Daily Average Invoice Value: ' +
FormatFloat('$### ###,##0.00', strtofloat(DailyAvgSalesinvoiceValue));

if GetSQLResult('select sum(INVOICENETTAMOUNT) from SalesinvoiceHeader where
(invoicedate + 1)= "now") = null then

Useful Scripts 145

begin
DailySalesInvoiceValue :='0";
end
else
begin
DailySalesinvoiceValue := GetSQLResult('select sum(INVOICENETTAMOUNT) from
SalesInvoiceHeader where (invoicedate + 1)= "now"");
end;
TheEmailBody := TheEmailBody + #13 + ' Daily Sales Invoice Value: ' +
FormatFloat('$### ###,##0.00' strtofloat(DailySalesInvoiceValue));
end;
'5": {Debtor Statistics}
begin
TheEmailBody := TheEmailBody + #13 + #13 + 'Debtor and Aging Statistics';
TheEmailBody := TheEmailBody + #13 + "

if GetSQLResult('select sum(PAYMENTAMOUNT) from CustomerPayments where
(paymentdate + 1)= "now" and PAYMENTSTYLE = "Received Payment" ') = null then
begin
DailyPaymentsin :="'0';
end
else
begin
DailyPaymentsin := GetSQLResult('select sum(PAYMENTAMOUNT) from
CustomerPayments where (paymentdate + 1)= "now" and PAYMENTSTYLE = "Received
Payment"");
end;
TheEmailBody := TheEmailBody + #13 + ' Daily Payments In: ' +
FormatFloat('$### ###,##0.00' strtofloat(DailyPaymentsin));

if GetSQLResult('select sum(DEPOSITAMOUNT) from CustomerDeposits where
(depositdate + 1)= "now™) = null then
begin
DailyDepositsTaken :='0';
end
else
begin
DailyDepositsTaken := GetSQLResult('select sum(DEPOSITAMOUNT) from
CustomerDeposits where (depositdate + 1)= "now"");
end;
TheEmailBody := TheEmailBody + #13 + ' Daily Deposits Taken: ' +
FormatFloat('$### ### ,##0.00',strtofloat(DailyDepositsTaken));

if (AgingRun = False) then
begin
executeSQL('delete from CustomerAging’);
executeSQL('insert into CustomerAging (AGINGASATDATE) values ((cast("NOW" as date)
1))
TheAgingID := GetSQLResult('select max(sysuniqueid) from CustomerAging’);
executeSQL(‘execute procedure CREATE_CUSTOMERAGING (cast("NOW" as date) -1) ,'
+ TheAgingID +',0,"","","","","");
{Get the Aging Headings}
AgingMethod := GetSQLResult('select CALCULATEDFROM from AGINGPERIODS);
if (AgingMethod = 'Monthly') then
begin
Period1Caption := GetSQLResult('select MONTHLYCAPTIONONE from CustomerAging');

146 Ostendo Scripting Support

Period2Caption := GetSQLResult('select MONTHLYCAPTIONTWO from CustomerAging'

);

Period3Caption := GetSQLResult('select MONTHLYCAPTIONTHREE from
CustomerAging’);

Period4Caption := GetSQLResult('select MONTHLYCAPTIONFOUR from CustomerAging'
);

Period5Caption := GetSQLResult('select MONTHLYCAPTIONFIVE from CustomerAging’);
end
else
begin
Period1Caption := 'Current;
Period2Caption := GetSQLResult('select PERIOD2 from AGINGPERIODSY;
Period2Caption :='1 to ' + Period2Caption;
PeriodACaption := GetSQLResult('select PERIOD2 from AGINGPERIODSY);
PeriodBCaption := GetSQLResult('select PERIOD3 from AGINGPERIODSY);
Period3Caption := PeriodACaption + ' to ' + PeriodBCaption;
PeriodACaption := GetSQLResult('select PERIOD3 from AGINGPERIODSY);
PeriodBCaption := GetSQLResult('select PERIOD4 from AGINGPERIODSY);
Period4Caption := PeriodACaption + ' to ' + PeriodBCaption;
PeriodACaption := GetSQLResult('select PERIOD4 from AGINGPERIODSY);
Period5Caption := PeriodACaption + '+
end;
end;
AgingRun := True;

if GetSQLResult('select sum(TOTALBALANCE) from CUSTOMERAGINGHEADER') = null
then
begin
TotalDebtorBalance :='0';
end
else
begin
TotalDebtorBalance := GetSQLResult('select sum(TOTALBALANCE) from
CUSTOMERAGINGHEADERY);
end;
TheEmailBody := TheEmailBody + #13 + ' Total Debtor Balance: ' +
FormatFloat('$### ###,##0.00',strtofloat(TotalDebtorBalance));

if GetSQLResult('select sum(CURRENTBALANCE) from CUSTOMERAGINGHEADER') =
null then
begin
Period1DebtorBalance :='0’;
end
else
begin
Period1DebtorBalance := GetSQLResult('select sum(CURRENTBALANCE) from
CUSTOMERAGINGHEADERY);
end;
TheEmailBody := TheEmailBody + #13 + ' * ' + Period1Caption + ' Debtor Balance: ' +
FormatFloat('$### ###,##0.00',strtofloat(Period1DebtorBalance));

if GetSQLResult('select sum(PERIOD1BALANCE) from CUSTOMERAGINGHEADER') =
null then
begin
Period2DebtorBalance := '0';
end

Useful Scripts 147

else
begin
Period2DebtorBalance := GetSQLResult('select sum(PERIOD1BALANCE) from
CUSTOMERAGINGHEADERY);
end;
TheEmailBody := TheEmailBody + #13 + ' * ' + Period2Caption + ' Debtor Balance: ' +
FormatFloat('$### ###,##0.00',strtofloat(Period2DebtorBalance));

if GetSQLResult('select sum(PERIOD2BALANCE) from CUSTOMERAGINGHEADER') =
null then
begin
Period3DebtorBalance :='0’;
end
else
begin
Period3DebtorBalance := GetSQLResult('select sum(PERIOD2BALANCE) from
CUSTOMERAGINGHEADERY);
end;
TheEmailBody := TheEmailBody + #13 + ' * ' + Period3Caption + ' Debtor Balance: ' +
FormatFloat('$### ###,##0.00',strtofloat(Period3DebtorBalance));

if GetSQLResult('select sum(PERIOD3BALANCE) from CUSTOMERAGINGHEADER') =
null then
begin
Period4DebtorBalance :='0’;
end
else
begin
Period4DebtorBalance := GetSQLResult('select sum(PERIOD3BALANCE) from
CUSTOMERAGINGHEADERY);
end;
TheEmailBody := TheEmailBody + #13 + ' * ' + Period4Caption + ' Debtor Balance: ' +
FormatFloat('$### ###,##0.00',strtofloat(Period4DebtorBalance));

if GetSQLResult('select sum(PERIOD4BALANCE) from CUSTOMERAGINGHEADER') =
null then
begin
Period5DebtorBalance :='0’;
end
else
begin
Period5DebtorBalance := GetSQLResult('select sum(PERIOD4BALANCE) from
CUSTOMERAGINGHEADERY);
end;
TheEmailBody := TheEmailBody + #13 + ' * ' + Period5Caption + ' Debtor Balance: ' +
FormatFloat('$### ###,##0.00',strtofloat(Period5DebtorBalance));
end;
'6": {Inventory and WIP Statistics}
begin
TheEmailBody := TheEmailBody + #13 + #13 + 'Inventory and WIP Statistics’;
TheEmailBody := TheEmailBody + #13 + "

TheSQL :='select sum(inventory.inventoryqty * itemmaster.averagecost *
itemunits.conversionfactor)' +
' from WAREHOUSEMASTER, INVENTORY,ITEMMASTER,ITEMUNITS' +
"where INVENTORY.warehousecode = warehousemaster.warehousecode' +

148 Ostendo Scripting Support

"and Itemmaster.itemcode = inventory.itemcode and ' +
' itemunits.itemcode = itemmaster.itemcode and ' +
" itemunits.tounit = inventory.inventoryunit *;
if GetSQLResult(TheSQL) = null then
begin
CurrentStockValue :='0";
end
else
begin
CurrentStockValue := GetSQLResult(TheSQL);
end;
TheEmailBody := TheEmailBody + #13 + ' Current Stock Value: ' +
FormatFloat('$### ###,##0.00',strtofloat(CurrentStockValue));

TheSQL :='select sum(currentwipvalue)' +
' from JOBHEADER' +
"where orderstatus <> "Closed";
if GetSQLResult(TheSQL) = null then
begin
CurrentJobWIP :="'0";
end
else
begin
CurrentJobWIP := GetSQLResult(TheSQL);
end;
TheEmailBody := TheEmailBody + #13 + ' Current Job WIP Value: ' +
FormatFloat('$### ###,##0.00',strtofloat(CurrentJobWIP));

TheSQL :='select sum(wipvalue)' +
' from ASSEMBLYHEADER' +
" where orderstatus <> "Closed";
if GetSQLResult(TheSQL) = null then
begin
CurrentAssemblyWIP :="0";
end
else
begin
CurrentAssemblyWIP := GetSQLResult(TheSQL);
end;
TheEmailBody := TheEmailBody + #13 + ' Current Assembly WIP Value: ' +
FormatFloat('$###, ###,##0.00',strtofloat(CurrentAssemblyWIP));

end;

end;
end;

{Footer Note}
TheEmailBody := TheEmailBody + #13 + #13 + 'Statistics were generated at: ' +
datetimetostr(now) + ' for ' + datetostr(date-1);

if EmailTheResult = true then
begin

SendEmailMessage(TheEmailHostName, TheEmailSenderAddress, TheUserEmail, TheEmailSubje
ct, TheEmailBody);

Useful Scripts 149

8.4

TheEmailBody :=";
end
else
begin
showmessage(TheUserEmail + ' + TheEmailSubject + "' + TheEmailBody);
TheEmailBody :=";
end;

end;

finally
EmailList.free;
end;

end;

function NoOfKPIS:integer;
var NumberOfKPIs: integer;
begin
TheOptionsLength := length(TheKPIOptions);
NumberOfKPIs := 0;
fory := 1 to TheOptionsLength do
begin
if (copy(TheKPIOptions,y,1)) =",' then
begin
NumberOfKPIs := NumberOfKPIs + 1;
end;
end;
Result := NumberOfKPIs;
end;

begin
CreateKPIEmailsAndSend;
end.

Re-Allocate Purchase Invoice Lines

{This is a Related Menu script allows you to call up an existing Purchase Invoice and amend all
line Allocations. This will remove any existing Allocations form the current Invoice Lines and
replace it with your new selection. At the same time it will go to the source of that allocation and

amend the source.}

var
TheJobNumber,JobTaskCount, TheJobTask: string;

TheProductCode, TheCodeType, TheProductUnit: string;
TheProductDescription, TheCatalogueName: string;
TheAllocID,TheSourcelD: double;
ThelnvoiceBatchNo,InvoiceCount: string;

procedure UpdatePurchaselnvoicelLines;
var
TempQuery: TpFIBQuery;
TempTrans: TpFIBTransaction;
begin
TempTrans := TpFIBTransaction.Create(nil);

150 Ostendo Scripting Support

TempQuery := TpFIBQuery.Create(nil);
try
begin
TempTrans.DefaultDatabase := OstendoDB;
TempQuery.Database := OstendoDB;
TempQuery.Transaction := TempTrans;
TempQuery.Options := qoStartTransaction;
TempQuery.SQL.Clear;
TempQuery.SQL.ADD('select PurchaselnvoiceAllocations.sysuniqueid,
PurchaselnvoiceLines.codetype, PurchaselnvoiceLines.linecode, PurchaselnvoicelLines.lineunit, *);
TempQuery.SQL.ADD('linedescription, linkedcataloguename *);
TempQuery.SQL.add(' from PurchaselnvoiceAllocations, PurchaselnvoiceLines);
TempQuery.SQL.add(' where PurchaselnvoiceAllocations.headersysuniqueid =
PurchaselnvoiceLines.sysuniqueid *);
TempQuery.SQL.add(' and PurchaselnvoicelLines.invoicebatchno ="' + ThelnvoiceBatchNo);
TempQuery.ExecQuery;
While not(TempQuery.eof) do
begin
TheProductCode := TempQuery.FN('linecode’).asstring;
TheCodeType := TempQuery.FN(‘codetype’).asstring;
TheProductUnit := TempQuery.FN('lineunit).asstring;
TheProductDescription := TempQuery.FN('linedescription’).asstring;
TheCatalogueName := TempQuery.FN('linkedcataloguename').asstring;
TheAllocID := TempQuery.FN('sysuniqueid’).value;

TheSourcelD := AllocateToJobOrder(TheJobNumber, TheJobTask, TheProductCode,
TheCodeType, TheProductUnit, TheProductDescription, TheCatalogueName, TheAllocID);

executeSQL(‘'update PurchaselnvoiceAllocations set AllocationType = "Job Order",
AllocationReference =" + TheJobNumber + " ,sourcesysuniqueid ="' + floattostr(TheSourcelD) +
where sysuniqueid = ' + floattostr(TheAllocID));

TempQuery.next;
end;

end;

finally
TempTrans.Free;
TempQuery.Close;
TempQuery.Free;

end;

end;

begin
ThelnvoiceBatchNo := GetSourceFieldValue('INVOICEBATCHNO','HEADERY);
InvoiceCount := GetSQLResult('select count(sysuniqueid) from Purchaselnvoices where
INVOICEBATCHNO ="+ ThelnvoiceBatchNo + ' and PurchaselnvStatus = "InProgress™);
if (InvoiceCount ='1") then
begin
{Change Allocation}
TheJobNumber ;= AskMandatoryQuestionWithLookup('Job Number', 'Please select the Job
Number', 1075);
JobTaskCount := GetSQLResult('select count(sysuniqueid) from JobTasks where OrderNumber
="+ TheJobNumber + "");
if JobTaskCount <> '1' then
begin
TheJobTask := AskQuestionWithUserDefinedLookup('select Taskname as "Task" from
Jobtasks where ordernumber = " + TheJobNumber + ", 'Job Task','Please select the Job Task',",
'‘Job Tasks for ' + TheJobNumber, 'task’);

Useful Scripts 151

end

else

begin

TheJobTask := GetSQLResult('select Taskname from Jobtasks where ordernumber =" +
TheJobNumber + ");

end;

{Procedure to update the Allocations}

UpdatePurchaselnvoiceLines;

ExecuteSQL (‘'update Purchaselnvoices set DEFAULTALLOCATIONTYPE = "Job Order",
DEFAULTALLOCATIONREF =" + TheJobNumber + " where INVOICEBATCHNO ="+
ThelnvoiceBatchNo);

RelatedScreenRefreshData('HEADERY);

RelatedScreenRefreshData('LINE");

end;
end.

Upload a Report to a Website

{This script shows exporting an Ostendo report to a pdf file}
{then uploading to a website via ftp then viewing the pdf file}
{Wide range of uses including displaying up to date pricing}

begin

OstendoReport('Standard Item Price List',3,",'/EXPORTREPORT',OstendoPath +
'ItemPriceList.pdf',");

SendFileFTP('www.yourftpprovider.com','ftpuser@yourftpprovider.com','ftpPassword'
,OstendoPath + 'ltemPriceList.pdf','ltemPriceList.pdf', True);

if MessageDIg('File Uploaded, View file on Website?',mtinformation,mbYes + mbNo,0) = mrYes
then

Run(‘http://www.development-x.com/demo/ltemPriceList.pdf");

end.

You should amend the Run(’http://www.development-x.com/demo/ltemPriceList.pdf') source to suit
your ftp service provider

152

Ostendo Scripting Support

9.1

Advanced Scripts

Advanced Scripts show some examples of scripting that can be used. Some knowledge
of Delphi language is required for those scripts that include a display entry screen

Data Entry Script
{This script uses Delphi to create the Entry Form itself including fields such as:

e Optional text Entry

e Mandatory Text Entry

e Date field with calendar date selection from drop-down calendar
o Field with selection from pre-defined options

Any entered data can - using scripting - be held against variables and used as required.}

var
frmMain: TForm;

pniTop: TPanel;

pniBottom: TPanel;

btnClose: TButton;

btnOK: TButton;

IbIField1: TLabel;

IbIField2: TLabel;

IbIField3: TLabel;

IbIField4: TLabel;

edtField1: TEdit;

edtField2: TEdit;

dateFieldl: TDateTimePicker;
ComboField1l: TComboBox;

procedure OKClick;
begin
if (edtfield1.text = ") then
begin
showmessage('Please enter your First Name");
edtfield1.setfocus;
exit;
end;

if (edtfield2.text = ") then

begin
showmessage('Please enter your Last Name");
edtfield2.setfocus;
exit;

end;

if (ComboFieldl.text = ") then

begin
showmessage('Please select either Male or Female");
ComboFieldl.setfocus;
exit;

end;

showmessage('Hi ' + edtfieldl.text + ', This is a simple Entry Form Example’);

Advanced Scripts

end;

procedure EditlKeyPress(Sender: TObject; var Key: Char);
begin

if key = #13 then {The Enter Key}

edtfield2.setfocus;
end;

procedure Edit2KeyPress(Sender: TObject; var Key: Char);
begin

if key = #13 then {The Enter Key}

dateFieldl.setfocus;
end;

procedure DatelKeyPress(Sender: TObject; var Key: Char);
begin

if key = #13 then {The Enter Key}

ComboFieldl.setfocus;
end;

procedure CloseClick;
begin

frmMain.close;
end;

begin

frmMain := TForm.Create(nil);

try

frmMain.width := 350;

frmMain.height := 250;

frmMain.caption := 'Ostendo - Data Entry Form’;
frmMain.position := poScreenCenter;
frmMain.borderstyle := bsSizeable;
frmMain.name := 'MainForm’;

{Top Panel}

pnlTop := TPanel.Create(frmMain);
pnlTop.Parent := frmMain;
pnlTop.Align := alclient;
pnlTop.BevelOuter := bvLowered;

Iblfield1 := TLabel.Create(pniTop);
Iblfield1.Parent := pniTop;
Iblfield1.left := 20;

Iblfield1.top := 20;

Iblfield1.caption := 'First Name";

edtfield1 := TEdit.Create(pniTop);
edtfield1.Parent := pnlTop;

edtfieldl.left := 20;

edtfield1.top := 40;

edtfield1.width := 140;

edtfield1.taborder := 0;
edtfield1.onKeyPress := 'Edit1KeyPress';

Iblfield2 := TLabel.Create(pnITop);
Iblfield2.Parent := pnlTop;

153

154

Ostendo Scripting Support

Iblfield2.left := 180;
Iblfield2.top := 20;
Iblfield2.caption := 'Last Name';

edtfield2 := TEdit.Create(pniTop);
edtfield2.Parent := pnlTop;

edtfield2.left := 180;

edtfield2.top := 40;

edtfield2.width := 140;

edtfield2.taborder := 1;
edtfield2.onKeyPress := 'Edit2KeyPress';

Iblfield3 := TLabel.Create(pnITop);
Iblfield3.Parent := pnlTop;
Iblfield3.left := 20;

Iblfield3.top := 80;

Iblfield3.caption := 'Birth Date’;

dateFieldl := TDateTimePicker.Create(pnlTop);
dateField1.Parent := pniTop;

dateFieldl.left := 20;

dateFieldl.top := 100;

dateField1.width := 140;

dateField1.taborder := 2;
dateField1l.onKeyPress := 'Date1KeyPress';

Iblfield4 := TLabel.Create(pnITop);
Iblfield4.Parent := pnlTop;
Iblfield4.left := 180;

Iblfield4.top := 80;

Iblfield4.caption := 'Male/Female’;

ComboFieldl := TComboBox.Create(pnlTop);
ComboFieldl.Parent := pnlTop;
CombokField1l.left := 180;

ComboField1.top := 100;

ComboFieldl.width := 140;
ComboFieldl.taborder := 3;
ComboFieldl1.Style := csDropDownlList;
ComboFieldl.ltems.Add('Female');
ComboFieldl.ltems.Add('Male");

{Create the Bottom Panel with Buttons}

{Bottom Panel}

pniBottom := TPanel.Create(frmMain);
pniBottom.Parent := frmMain;
pniBottom.Height := 50;
pniBottom.width := 350;
pniBottom.Align := albottom;
pniBottom.BevelOuter := bvNone;

{OK Button}

btnOK := TButton.Create(pniBottom);
btnOK.Parent := pniBottom;
btnOK.left := 145;

btnOK.Top := 15;

Advanced Scripts 155

btnOK.Width := 90;
btnOK.Height := 20;
btnOK.Caption := '&OK;
btnOK.OnClick :='OKClick'’;
btnOK.Hint := 'Accept Entries’;
btnOK.ShowHint := True;
btnOK.taborder := 98;
btnOK.anchors := akright;

{Close Button}

btnClose := TButton.Create(pniBottom);
btnClose.Parent := pnlBottom;
btnClose.left := 245;

btnClose.Top := 15;

btnClose.Width := 90;

btnClose.Height := 20;
btnClose.Caption :='&Close’;
btnClose.OnClick := 'CloseClick’;
btnClose.Hint := 'Close Data Entry Screen’;
btnClose.ShowHint := True;
btnClose.taborder := 99;
btnClose.anchors := akright;

frmMain.showmodal;

finally
frmMain.free;
end;

end.

Data Grid Update Script

{This script uses Delphi to create a Grid showing multiple records into which you can update
selected fields.

The practical example below is a grid that displays Item Sell and Buy Prices and allows you, in a
single screen, to update selected Prices}

var
frmMain: TForm;

pniTop: TPanel;

pniBottom: TPanel;

btnClose: TButton;

btnOK: TButton;

IbIField1: TLabel;

IbIField2: TLabel;

IbIField3: TLabel;

IbIField4: TLabel;

edtField1: TEdit;

edtField2: TEdit;

dateField1l: TDateTimePicker;
ComboField1l: TComboBox;

156 Ostendo Scripting Support

TempQuery: TpFIBDataSet;
TempTrans: TpFIBTransaction;
dbgData: TDBGrid;

TempDS: TDatasource;
ItemDisplay,ltemPriceUpdate: String;

procedure CloseClick;

begin
TempQuery.edit;
TempQuery.post;
frmMain.close;

end;

begin
frmMain := TForm.Create(nil);
try
begin
frmMain.width := 760;
frmMain.height := 600;
frmMain.caption := 'Ostendo - Update Item Prices Grid (Immediate Update)’;
frmMain.position := poScreenCenter;
frmMain.borderstyle := bsSizeable;
frmMain.name := 'MainForm’;

TempTrans := TpFIBTransaction.Create(frmMain);
TempQuery := TpFIBDataSet.Create(frmMain);

TempTrans.DefaultDatabase := OstendoDB;
TempQuery.Database := OstendoDB;
TempQuery.Transaction := TempTrans;
TempQuery.Autocommit := true;
ItemDisplay := 'select temCode as "ltem Code"," +
‘itemdescription as "Description"," +
‘itemunit as "Unit"," +
'lastcost as "Last Cost"," +
‘'standardcost as "Std Cost",' +
‘averagecost as "Avg Cost",' +
'stdbuyprice as "Buy Price",' +
'stdsellprice as "Sell Price",' +
'sysuniqueid from Itemmaster order by 1
IltemPriceUpdate := 'update ltemmaster set stdbuyprice = :"Buy Price
‘stdsellprice = :"Sell Price™ +
"where sysuniqueid = :old_sysuniqueid’;
TempQuery.SelectSQL.add(ItemDisplay);
TempQuery.UpdateSQL.add(ltemPriceUpdate);
TempQuery.open;

, +

TFloatField(TempQuery.FN('Last Cost')).currency := true;
TFloatField(TempQuery.FN('Avg Cost')).currency = true;
TFloatField(TempQuery.FN('Std Cost')).currency := true;

TFloatField(TempQuery.FN('Buy Price')).currency := true;
TFloatField(TempQuery.FN('Sell Price")).currency := true;

TempDS := TDatasource.create(frmMain);
TempDS.Dataset := TempQuery;

Advanced Scripts

{Top Panel}

pnlTop := TPanel.Create(frmMain);
pnlTop.Parent := frmMain;
pnlTop.Align := alclient;
pniTop.BevelOuter := bvLowered;

{Create the Data aware grid and set the column options}
dbgData := TDBGrid.create(frmMain);
dbgData.parent := pnlTop;
dbgData.align := alClient;
dbgData.datasource := TempDS;
dbgData.columns[0].width := 140;
dbgData.columns[0].readonly := true;
dbgData.columns[1].width := 200;
dbgData.columns[1].readonly := true;
dbgData.columns[2].width := 40;
dbgData.columns[2].readonly := true;
dbgData.columns[3].readonly := true;
dbgData.columns[4].readonly := true;
dbgData.columns[5].readonly := true;

dbgData.columns[8].visible := false; {Hide the Sysuniqueid field}

{Create the Bottom Panel with Buttons}

{Bottom Panel}

pniBottom := TPanel.Create(frmMain);
pniBottom.Parent := frmMain;
pniBottom.Height := 50;
pniBottom.width := 700;
pniBottom.Align := albottom;
pniBottom.BevelOuter := bvNone;

{Close Button}

btnClose := TButton.Create(pniBottom);
btnClose.Parent := pnlBottom;
btnClose.left := 600;

btnClose.Top := 15;

btnClose.Width := 90;

btnClose.Height := 20;
btnClose.Caption :='&Close’;
btnClose.OnClick := 'CloseClick’;
btnClose.Hint := 'Close Price Update Screen’;
btnClose.ShowHint := True;
btnClose.taborder := 99;
btnClose.anchors := akright;

frmMain.showmodal;
end;

finally
frmMain.free;

end;

end.

157

158

Ostendo Scripting Support

9.3

Call Centre - Email Import
{XXXXX CALL CENTRE XXXXX}

{This script shows importing from and email send via a web form}

{Shows using the InsertRecord function with field mapping using a StringList}

{Wide range of uses, the example show entering call centre Tickets from a web page}
{You can use page below to test example}
{http://www.development-x.com/callticket.html}

{Script Constants, change to suit your email settings - or demo using the ones below}
const

POP3Server = 'mail.development-x.com’;

POP3UserName = 'demo@development-x.com’;

POP3Password = ‘demo’;

var
CallCount: Integer;

function GetNextMappinglndex(Currindex: Integer; EmailBody: String): Integer;
var
TemplList: TStringList;
X: Integer;
begin
{Function to find the end of a multi line value - (memo notes)}
Result := Currindex;
TemplList := TStringList.create;
try
TemplList.Text := EmailBody;
for x := (Currindex+1) to TempList.Count - 1 do
begin
if trim(TempList.Names[x]) <> " then
begin
Result := x;
exit;
break;
end;
inc(Result);
end;
finally
TempList.free;
end;
end;

function RetreiveValueFromBody(EmailBody: String; FieldName: String): String;
var
TemplList: TStringList;
X, i, endindex: Integer;
begin
{Function to get a value from the email body in format Name=Value}
Result :=";
Templist := TStringList.create;
try
TemplList.Text := EmailBody;
x := TempList.IndexOfName(FieldName);
if X = -1 then exit;
{Multi Line Values}

Advanced Scripts 159

endindex := GetNextMappingIndex(x,EmailBody);
Result := TempList.Values[TempList.Names[x]];
if endindex > (x+1) then
for i := (x+1) to endindex do
if pos('MID #',TempList.Strings[i]) = 0 then {remove any unwanted text from the email body}
Result := Result + #13 + TempList.Stringsi;

finally
TempList.free;

end;

end;

procedure GetEmailRequest;
var
MsgCount: Integer;
X: Integer;
EmailSubject, EmailBody: String;
Mappings: TStringList;
begin
Mappings := TStringList.Create;
try
{receive email using settings specified at top of script in "const" section}
MsgCount := ReceiveEmail(POP3Server,POP3UserName,POP3Password, True);
for x := 1 to MsgCount do
begin
EmailSubject :=GetEmailMessage('Subject’,x);
EmailBody := GetEmailMessage('Body',x);
{look for a specific subject}
if ((trim(EmailBody) <> ") and (uppercase(EmailSubject) = 'CALLTICKET")) then
begin
Mappings.Clear;
{Fixed Values}
Mappings.Add('CALLMETHOD=Web);
Mappings.Add('COMPANYTYPE=Prospect’;
Mappings.Add('CALLDATE=" + DateToStr(Date));
Mappings.Add('CALLTIME=" + timetostr(Now));
{Values read from email}
Mappings.Add(COMPANYNAME=" +
RetreiveValueFromBody(EmailBody, COMPANYNAME));
Mappings.Add('CALLNOTE=" + RetreiveValueFromBody(EmailBody,'CALLNOTE"));
{Insert record into CALLNOTES table}
InsertRecord('CALLNOTES',Mappings.text, True);
inc(CallCount);
end;
end;
finally
Mappings.free;
end;
end;

begin {Main Script Section}

CallCount :=0;

{Call function to receive email messages sent from website, mobile phone, PDA, text to email
etc}

GetEmailRequest;

MessageDlg(inttostr(CallCount) + ' call requests were processed’,mtinformation,mbok,0);
end.

160

Ostendo Scripting Support

9.4

Import Timesheets from Excel
{XXXXX Import Timesheets from excel file XXXXX}

{This script shows opening an excel file and creating a TimeSheet batch}
{from the cells contents. Note: the excel columns and rows are 0 based}
{so to read the first cell would be SSGetCellText(0,0) (Column,Row)}

{The download email attachment example could be included with this one}
{to first download the excel file from an email}

function GetExcelFile: string;

var
OpenDlg: TOpenDialog;

begin
OpenDlg := TOpenDialog.Create(Nil);
try

OpenDlg.Filter :='Excel Files (*.xIs)|*.xIs|All Files (*.*)|*.*";
if OpenDlg.Execute then
Result := OpenDlg.filename
else
Result :=";
finally
OpenDlg.Free;
end;
end;

function InsertHeader(ExcelFileName,EmployeeName,WeekEnding: String): Integer;
begin
Result := InsertTimesheetHeader('InProgress','For Week Ending: ' + WeekEnding,'Employee’
,EmployeeName,True,Date,'"Waiting Approval',date,",'Imported from Excel (' + ExcelFileName +
")',Date);
end;

procedure CreateTimeSheetEntries;
var
ExcelFileName,EmployeeName: String;
X, RowCount, BatchNumber: Integer;
begin
ExcelFileName := GetExcelFile;
if trim(ExcelFileName) =" then exit;
LoadSpreadSheet(ExcelFileName);
RowCount := SSGetContentRowCount;
BatchNumber := InsertHeader(ExcelFileName,SSGetCellText(1,0),SSGetCellText(1,1));
EmployeeName := SSGetCellText(1,0);
for x := 3 to RowCount -1 do
{Check we have a date}
if trim(SSGetCellText(0,x)) <> " then
begin
InsertTimesheetLine(
BatchNumber
, Strtodatetime(SSGetCellText(0,x))
,SSGetCellText(1,x)
,SSGetCellText(2,x)
,EmployeeName
,'STD'
,SSGetCellText(4,x)
,'LAB-SERVICE'

Advanced Scripts 161

,0

,0
,strtofloat(SSGetCellText(3,x))
,'Chargeable’

,SSGetCellText(5,x)

,False

,False

,False

")
end;
{Optionally update the spreadsheet so you know it has been imported}
SSSetCellText(2,0,'Batch No:');
SSSetCellText(2,1,'Imported On:";
SSSetCellText(3,0,inttostr(BatchNumber));
SSSetCellText(3,1,datetimetostr(Date));
SaveSpreadsheet(ExcelFileName);

end;

begin

CreateTimeSheetEntries;

MessageDIg('Timesheet Imported',mtinformation,mbok,0);
end.

Microsoft Access Database Example
{XXXXX Simple microsoft access database example XXXXX}

{This script shows opening a MS Access file and performing}

{delete, insert and select query's on the database table "Customers"}

{Could be used to either write data from Ostendo to Access for a}

{custom application or import data from a PDA or other device using Access}

var
ADO: TADOConnection;
ADOQry: TADOQuery;
begin
ADO := TADOConnection.Create(nil);
ADOQIry := TADOQuery.Create(nil);
try
ADO.ConnectionString := 'Provider=Microsoft.Jet. OLEDB.4.0;Data Source="+ OstendoPath +
‘accessdemo.mdb’;
ADO.LoginPrompt := False;
ADO.Connected := true;
ADOQry.Connection := ADO;
{delete sql}
ADOQry.SQL.Add('delete from Customers’);
ADOQry.ExecSQL;
ADOQIry.Close;
ADOQry.SQL.Clear;
{Insert sql}
ADOQry.SQL.Add('insert into Customers (CompanyName,EmailAddress) values ("Test
Company", "test@tc.test")");
ADOQry.ExecSQL;
ADOQIry.Close;
ADOQry.SQL.Clear;

162 Ostendo Scripting Support

{Select sql}
ADOQry.SQL.Add('Select * from Customers");
ADOQry.Open;
showmessage(ADOQry.FieldByName('‘CompanyName').AsString
+'-'+ ADOQry.FieldByName('EmailAddress').AsString);
ADOQIry.close;
ADO.Connected := false;

finally
ADOQry.Free;
ADO.Free;

end;

end.

{Read table from ostendo loop and save to text file}
var
OSTQry: TpFIBQuery;
CustList: TStringList;
begin
OSTQry := TpFIBQuery.Create(nil);
CustList := TStringList.Create;
try
OSTQry.Database := OstendoDB,;
OSTQry.SQL.Add('select CUSTOMER from CUSTOMERMASTER?);
OSTQry.ExecQuery;
while not OSTQry.Eof do
begin
CustList.Add(OSTQry.FN('CUSTOMER").AsString);
OSTQry.Next;
end;
CustList.SaveToFile(OstendoPath + 'customers.txt’);
run(OstendoPath + ‘customers.txt');
finally
CustList.Free;
OSTQry.Free;
end;
end.

9.6 MYOB Customer File CSV Import

{XXXXX MYOB CSV CUSTOMERS IMPORT XXXXX}

{This script shows importing from an MYOB comma separated values file}
{Shows parsing values from the line using its index}
{How to use a progress indicator is also shown}

function GetCSVFile: string;

var
OpenDlg: TOpenDialog;

begin
OpenDlg := TOpenDialog.Create(Nil);
try

OpenDlg.Filter := 'Text Files (*.txt)|*.txt| Comma Separated Values (*.csv)|*.csv|All Files (*.*)|*.*";
if OpenDlg.Execute then

Result := OpenDlg.filename
else

Advanced Scripts 163

Result :=";
finally
OpenDlg.Free;
end;
end;

function ImportFromCSVFile: boolean;
var
ImportFile: String;
ImportValuesList, FieldMappings: TStringList;
X: Integer;
CustomerType, TaxGroup: String;
begin
Result := True;
ImportFile := GetCSVFile;
if trim(ImportFile) =" then
begin
Result := False;
exit;
end;
{Ask for a customer type, Tax Group to be used}
CustomerType := AskQuestionWithLookup('Select a Customer Type', 'This will be used for all
Customers you are importing', 1028, ");
TaxGroup := AskQuestionWithLookup('Select a Tax Group', 'This will be used for all Customers
you are importing’, 1017, ");
if trim(CustomerType) = " then
begin
Result := False;
exit;
end;
ImportValuesList := TStringList.Create;
FieldMappings := TStringList.Create;
try
{Load ImportFile into StringList}
ImportValuesList.LoadFromFile(ImportFile);
FieldMappings.clear;
{Loop the list and add fieldnames/values to mappings StringList}
{Start at 1 rather than 0 to skip header record if you exported it from MYOB}
ShowProgress('Importing Customers...", (ImportValuesList.Count-1), False);
for x := 1 to ImportValuesList.Count -1 do {check customer does not already exist}
begin
if DBValueExists(CUSTOMERMASTER', 'CUSTOMER',
ParseString(ImportValuesList.Strings[x],',',0), False) <> True then
begin
FieldMappings.clear;
FieldMappings.Add('CUSTOMER=" + ParseString(ImportValuesList.Strings[x],",',0));
FieldMappings.Add({CUSTOMERTYPE="' + CustomerType);
FieldMappings.Add('CUSTOMERSTATUS=Active");
FieldMappings.Add(CUSTOMERINVOICENAME=" +
ParseString(ImportValuesList.Strings[x],",',0));
FieldMappings.Add(CUSTOMERADDRESS1=" +
ParseString(ImportValuesList.Strings[x],",',5));
FieldMappings.Add(CUSTOMERADDRESS2=" +
ParseString(ImportValuesList.Strings[x],",',6));
FieldMappings.Add(CUSTOMERADDRESS3=" +
ParseString(ImportValuesList.Strings[x],",',7));
FieldMappings.Add(CUSTOMERPOSTALCODE=' +

164 Ostendo Scripting Support

ParseString(ImportValuesList.Strings[x],',',11));
FieldMappings.Add('CUSTOMERSTATE=" + ParseString(ImportValuesList.Strings[x],",",10));
FieldMappings.Add('CUSTOMERCITY=" + ParseString(ImportValuesList.Strings[x],",",9));
FieldMappings.Add('CUSTOMERCOUNTRY=" +
ParseString(ImportValuesList.Strings[x],',',12));
FieldMappings.Add('CUSTOMERPHONE-=" + ParseString(ImportValuesList.Strings[x],",",13));

FieldMappings.Add('CUSTOMERFAX=" + ParseString(ImportValuesList.Strings[x],',",16));
FieldMappings.Add('CUSTOMEREMAIL=" + ParseString(ImportValuesList.Strings[x],',",17));
FieldMappings.Add('CUSTOMERWEB=" + ParseString(ImportValuesList.Strings[x],",',18));
FieldMappings.Add(TAXGROUP="' + TaxGroup);
InsertRecord('CUSTOMERMASTER', FieldMappings.text, False);
end;
UpdateProgress(x);
end;
finally
EndProgress;
ImportValuesList.Free;
FieldMappings.Free;
end;
end;

begin
if ImportFromCSVFile then
MessageDIg('Import Complete',mtinformation,mbok,0)
else

MessageDIg('Import Cancelled',mtinformation,mbok,0);
end.

