Your Data is Your Foundation.
Are There Cracks in Yours?

Poor data quality isn’t just an inconvenience; it's a liability. Inconsistent entries, missing
information, and broken business rules lead to inaccurate reports, failed data imports, and
flawed decision-making. Every time a user leaves a critical field blank or enters the wrong

code, a crack forms in your foundation.

Become the Data Quality Gatekeeper

SES
<L 1 J<
SHECS

SORECO
S0000
CRUNLRURL

B8

Ostendo provides a powerful, built-in tool to protect the integrity of your database:
User Defined Validations. This feature allows you to act as a gatekeeper,
defining and enforcing your unique business rules directly within the system. Ensure only clean,
correct, and complete data ever makes it into your records.

More Than Just a "Required Field"

User Defined Validations go far beyond simple checks for blank fields. They allow you
to build detailed, conditional logic that runs automatically whenever a record is
inserted or updated. This avoids the need for complex Required Fields, Custom
Trigget Data Scripts for many common validation tasks.

Example Box

Scenario
If an item's Category is ‘Accessories' or 'Fasteners’, then the Analysis Group for that item

must not be left blank.

Power
This level of conditional logic is impossible with a standard 'Required Field' setting.

Understanding Ostendo’s Automation Sequence

Validations don't operate in a vacuum. Ostendo processes automation rules in a specific, logical order.
Understanding this sequence is key to building reliable workflows.

User Defined Defaults
The system first applies any default values to pre-fill fields.

J J

User Defined Actions
o If validation passes, the system then triggers any subsequent

automated actions.

Anatomy of a Validation Rule

Let's break down the User Defined Validations screen (found under File -> Customisation Configuration ->
User Defined Validations'). Each field plays a critical role in defining your rule's behavior.

5] (2] User Defined Validations

Table Name: The database table where the
rule applies.

A

User Defined Validations (

Table Mama v

Fleld Marme

Field Name: The specific field being checked.

h''d

f

Validation Style

Validation Style: *When* the rule triggers (on
insert, update, etc.).

N

Validation Message

Validation Message: The custom error
message the user will see.

A 4

From Clause

From Clause: The table(s) your logic will
query.

b 3

Conditional Clause
Conditional Clause: The heart of the rule—the
SQL condition that must be met.

Rule Status

O Active Inactive . Rule Status & Restricted User: Controls for
e testing and deploying the rule.

4

Crafting Your Logic: The 'From™ and "Conditional” Clauses
These two fields are where you define the precise logic for your validation.

"From Clause’ "Conditional Clause’

Purpose Purpose

Specifies the table name(s) to be used in your This is the ‘brain’ of your rule. It is the syntax that
condition. follows the "WHERE " in a standard SQL statement.
Best Practice The validation triggers based on whether this

While it can sometimes be left blank if you are only condition evaluates to true or false.
using the main "Table Name', it is good practice to
always define the table name here for clarity.

Precisely Controlling When Your Rule Fires

The ‘Validation Style’ determines the exact moment your rule is checked. The

options give you granular control over the user workflow.

On Insert Only On Update Only
Checks the rule only when a Checks the rule only when an
new record is created. existing record is saved.
e Raise Error if Condition e Raise Error if Condition
1s met 1s met
e Raise Error if Condition e Raise Error if Condition
1s not met 1S not met

On Insert or Update

Checks the rule in both
scenarios.

e Raise Error if Condition
is met

e Raise Error if Condition
1S not met

For most data integrity rules, you will use "Raise Error if Condition is met on either ‘Insert Only’ or ‘Insert or Update’

The Pro’s Toolkit: Writing Bulletproof Syntax

_;x Test Before You Deploy
= Befor:e implementing a ru}e, always test Select ITEMMASTER.ANALYSISGROUP
your Conditional Clause syntax in the from ITEMMASTER
Data Spreadsheet (" General -> Data where ITEMMASTER.ITEMCATEGORY IN ('Accessories','Fasteners')

Spreadsheet). This ensures your logic is
correct before it goes live.

@ Master the Art of Checking for Blanks

To reliably check for a blank entry (which
could be a 'NULL value or an empty
string), use the "coalesce’ function. This
function handles both cases gracefully.

(coalesce(CUSTOMERMASTER.CUSTOMEREMAIL, '') = '')

The Pro's Toolkit: Deploying with Confidence

Avoid disrupting users with faulty rules. Use the built-in status controls to test and deploy your

validations safely.

C\

1. Test (" Restricted to User’)

Set the rule to this status and
specify a "Restricted User’. Only

that user will experience the
validation, allowing for safe,
isolated testing.

2. Deploy (" Active For All Users™)

Once testing is complete, switch the
status to make the rule live for
everyone in the database.

3. Disable (" Not Active’)

Temporarily turn off a rule without
deleting it. The rule remains in the
system but will not be triggered.

The Masterclass: Real-World Validation Recipes

The best way to learn is by doing. The following slides present common validation
scenarios in a simple 'recipe’ format. Each recipe provides the goal, the required
settings (‘ingredients'), and the logical clause (‘'method') you need to implement it.

Recipe: Require a Primary Supplier for 'Fasteners'

Goal

Force the user to enter a Primary Supplier, but *only* when creating a new Item with a Category of 'Fasteners'.

Ingredients (The Settings)

o Table Name: "ITEMMASTER®

o Field Name: "PRIMARYSUPPLIER®

e Validation Style: Raise Error if Condition is met on Insert Only

o Validation Message: "A Supplier must be specified for Items categorised as Fasteners."

Method (The "Conditional Clause’)

(coalesce(ITEMMASTER.PRIMARYSUPPLIER, '') = '') AND ITEMMASTER.ITEMCATEGORY = 'Fasteners'

Logic Explained
This condition is true (and raises an error) only if both parts are true: the supplier field is blank AND the item
category is 'Fasteners’.

Recipe: Mandate Customer Email on Creation
Goal

Ensure an email address is always entered when a new customer record is created.

Ingredients (The Settings)

e Table Name: "CUSTOMERMASTER"

e Field Name: "CUSTOMEREMAIL"

 Validation Style: Raise Error if Condition is met on Insert Only
 Validation Message: "Email Address must be entered."

Method (The Conditional Clause’)

(coalesce(CUSTOMERMASTER.CUSTOMEREMAIL, '') = '')

Logic Explained
The condition is met simply if the customer email field is blank upon creation of the record.

Upgrading Your Recipe: Mandate Email on Create *and* Update

Goal

Expand the previous rule to ensure an email address is present when creating a customer or when an existing
customer record is updated.

The Only Change
To apply this rule to updates as well as inserts, you only need to change one setting. The core logic remains the
same.

Updated Ingredient
« Validation Style: Raise Error if Condition is met on Insert or Update

Method (The "Conditional Clause’)

(coalesce(CUSTOMERMASTER.CUSTOMEREMAIL, '') = '')

Logic Explained
The logic is identical. We are still raising an error if the email field is blank, but we are now checking at two
different times: insert and update.

Advanced Playbook: Defaults + Validations for Clean Imports

The Scenario

You import Job Orders from a web source that doesn't provide a Job Category. You need to allow the import but force
staff to categorize the job later.

e o

@ Step 1: The Default (Allow the Import) @ Step 2: The Validation (Enforce the Fix)
Create a User Defined Default. Create a User Defined Validation.

When a Job Order of type 'Web Order' is inserted, # Set ‘Validation Style" to ‘Raise Error if Condition is
automatically set its "Job Category” to met on Update Only".
'‘Undefined'. This allows the record to be created Condition: JOBMASTER.JOBCATEGORY = 'Undefined'’

without error.
Message: "Please select a valid Job Category

before saving."

The Result
! % Imports run smoothly. The first time a user tries to edit an imported job, they are forced to correct the missing
data, ensuring long-term data quality without disrupting automation.

Your Blueprint for Data Integrity

Use these core principles as your guide to building robust and effective validations in Ostendo.

@ Start with ‘Why’: Clearly define the business rule you need to enforce before you start building.

5 Test in the Spreadsheet: Always validate your SQL syntax in the Data Spreadsheet first.

G@ Use coalesce : Make this your go-to function for reliably checking blank/null text fields.

@ Deploy Safely: Always use the "Restricted to User" status to test new rules before activating
for everyone.

@ Combine and Conquer: Remember that Validations, Defaults, and Actions work together to
@ create powerful automated workflows.

Data Quality
Gatekeeper

	Ostendo-Data_Integrity_Rules_Masterclass.pdf_001.pdf (p.1)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_002.pdf (p.2)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_003.pdf (p.3)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_004.pdf (p.4)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_005.pdf (p.5)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_006.pdf (p.6)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_007.pdf (p.7)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_008.pdf (p.8)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_009.pdf (p.9)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_010.pdf (p.10)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_011.pdf (p.11)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_012.pdf (p.12)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_013.pdf (p.13)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_014.pdf (p.14)
	Ostendo-Data_Integrity_Rules_Masterclass.pdf_015.pdf (p.15)

